An integrated microfluidic device for two-dimensional combinatorial dilution.

Lab Chip

Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Published: October 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-throughput preparation of multi-component solutions is an integral process in biology, chemistry and materials science for screening, diagnostics and analysis. Compact microfluidic systems enable such processing with low reagent volumes and rapid testing. Here we present a microfluidic device that incorporates two gradient generators, a tree-like generator and a new microfluidic active injection system, interfaced by intermediate solution reservoirs to generate diluted combinations of input solutions within an 8 × 8 or 10 × 10 array of isolated test chambers. Three input solutions were fed into the device, two to the tree-like gradient generator and one to pre-fill the test chamber array. The relative concentrations of these three input solutions in the test chambers completely characterized device behaviour and were controlled by the number of injection cycles and the flow rate. Device behaviour was modelled by computational fluid dynamics simulations and an approximate analytic formula. The device may be used for two-dimensional (2D) combinatorial dilution by adding two solutions in different relative concentrations to each of its three inputs. By appropriate choice of the two-component input solutions, test chamber concentrations that span any triangle in 2D concentration space may be obtained. In particular, explicit inputs are given for a coarse screening of a large region in concentration space followed by a more refined screening of a smaller region, including alternate inputs that span the same concentration region but with different distributions. The ability to probe arbitrary subspaces of concentration space and to control the distribution of discrete test points within those subspaces makes the device of potential benefit for high-throughput cell biology studies and drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357545PMC
http://dx.doi.org/10.1039/c1lc20449aDOI Listing

Publication Analysis

Top Keywords

input solutions
16
concentration space
12
microfluidic device
8
device two-dimensional
8
two-dimensional combinatorial
8
combinatorial dilution
8
test chambers
8
three input
8
test chamber
8
relative concentrations
8

Similar Publications

While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.

View Article and Find Full Text PDF

Aim: To synthesise the existing literature on effective interventions aligned with the 2015 U.S. Occupational Safety and Health Administration guidelines to address workplace violence against nurses.

View Article and Find Full Text PDF

Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.

Microsyst Nanoeng

September 2025

Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.

View Article and Find Full Text PDF

Wearable technologies that analyse non-conventional biological matrices, such as interstitial fluid, sweat, tears or breath, have the potential to provide longitudinal biomarker data with minimal invasiveness. These data could provide insights into physiological and behavioural patterns, in particular outside medical care facilities. Despite the success of continuous glucose monitoring, the adoption of wearable sensors for managing endocrine and metabolic diseases remains limited.

View Article and Find Full Text PDF

From flux analysis to self contained cellular models.

Front Syst Biol

August 2025

Systems Biotechnology, School of Engineering and Design, Technical University of Munich, Munich, Germany.

Mathematical models for cellular systems have become more and more important for understanding the complex interplay between metabolism, signalling, and gene expression.In this manuscript, starting from the well-known flux balance analysis, tools and methods are summarised and illustrated by various examples that describe the way to models with kinetics for individual reactions steps that are finally self-contained. While flux analysis requires known (measured) input fluxes, self-contained (or self-sustained) models only get information on concentrations of environmental components.

View Article and Find Full Text PDF