Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background & Aims: The human di/tripeptide transporter human intestinal H-coupled oligonucleotide transporter (hPepT1) is abnormally expressed in colons of patients with inflammatory bowel disease, although its exact role in pathogenesis is unclear. We investigated the contribution of PepT1 to intestinal inflammation in mouse models of colitis and the involvement of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway in the pathogenic activity of colonic epithelial hPepT1.

Methods: Transgenic mice were generated in which hPepT1 expression was regulated by the β-actin or villin promoters; colitis was induced using 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulfate (DSS) and the inflammatory responses were assessed. The effects of NOD2 deletion in the hPepT1 transgenic mice also was studied to determine the involvement of the PepT1-NOD2 signaling pathway.

Results: TNBS and DSS induced more severe levels of inflammation in β-actin-hPepT1 transgenic mice than wild-type littermates. Intestinal epithelial cell-specific hPepT1 overexpression in villin-hPepT1 transgenic mice increased the severity of inflammation induced by DSS, but not TNBS. Bone marrow transplantation studies showed that hPepT1 expression in intestinal epithelial cells and immune cells has an important role in the proinflammatory response. Antibiotics abolished the effect of hPepT1 overexpression on the inflammatory response in DSS-induced colitis in β-actin-hPepT1 and villin-hPepT1 transgenic mice, indicating that commensal bacteria are required to aggravate intestinal inflammation. Nod2-/-, β-actin-hPepT1 transgenic/Nod2-/-, and villin-hPepT1 transgenic/Nod2-/- littermates had similar levels of susceptibility to DSS-induced colitis, indicating that hPepT1 overexpression increased intestinal inflammation in a NOD2-dependent manner.

Conclusions: The PepT1-NOD2 signaling pathway is involved in aggravation of DSS-induced colitis in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186842PMC
http://dx.doi.org/10.1053/j.gastro.2011.06.080DOI Listing

Publication Analysis

Top Keywords

transgenic mice
20
pept1-nod2 signaling
12
signaling pathway
12
intestinal inflammation
12
hpept1 overexpression
12
dss-induced colitis
12
colitis mice
8
hpept1 expression
8
intestinal epithelial
8
villin-hpept1 transgenic
8

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Epizootic hemorrhagic disease virus (EHDV) causes severe disease in ruminants. We assessed the pathogenicity of the Chinese EHDV-7 isolate YN09 in mice lacking the type I interferon receptor and in sheep. In mice, YN09 infection resulted in 100% mortality, with histopathological lesions, viral replication, and immunoreactivity in multiple organs.

View Article and Find Full Text PDF

Circadian oscillations of gene transcripts rely on a negative feedback loop executed by the activating BMAL1-CLOCK heterodimer and its negative regulators PER and CRY. Although circadian rhythms and CLOCK protein are mostly absent during embryogenesis, the lack of BMAL1 during prenatal development causes an early aging phenotype during adulthood, suggesting that BMAL1 performs an unknown non-circadian function during organism development that is fundamental for healthy adult life. Here, we show that BMAL1 interacts with TRIM28 and facilitates H3K9me3-mediated repression of transposable elements in naïve pluripotent cells, and that the loss of BMAL1 function induces a widespread transcriptional activation of MERVL elements, 3D genome reorganization and the acquisition of totipotency-associated molecular and cellular features.

View Article and Find Full Text PDF

Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.

View Article and Find Full Text PDF

Radial spokes (RSs) are conserved multimolecular structures attached to the axonemal microtubule doublets and are essential for the motility control of both cilia and sperm flagella. CFAP91, an RS3 protein, is implicated in human male infertility, yet its molecular function remains poorly understood. Here, we demonstrate that Cfap91 knockout (KO) mice exhibit impaired sperm flagellum formation and male infertility.

View Article and Find Full Text PDF