Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ruminococcus albus 8 is a ruminal bacterium capable of metabolizing hemicellulose and cellulose, the major components of the plant cell wall. The enzymes that allow this bacterium to capture energy from the two polysaccharides, therefore, have potential application in plant cell wall depolymerization, a process critical to biofuel production. For this purpose, a partial genome sequence of R. albus 8 was generated. The genomic data depicted a bacterium endowed with multiple forms of plant cell wall-degrading enzymes. The endoxylanases of R. albus 8 exhibited diverse modular architectures, including incorporation of a catalytic module, a carbohydrate binding module, and a carbohydrate esterase module in a single polypeptide. The accessory enzymes of xylan degradation were a β-xylosidase, an α-l-arabinofuranosidase, and an α-glucuronidase. We hypothesized that due to the chemical complexity of the hemicellulose encountered in the rumen, the bacterium uses multiple endoxylanases, with subtle differences in substrate specificities, to attack the substrate, while the accessory enzymes hydrolyze the products to simple sugars for metabolism. To test this hypothesis, the genes encoding the predicted endoxylanases were expressed, and the proteins were biochemically characterized either alone or in combination with accessory enzymes. The different endoxylanase families exhibited different patterns of product release, with the family 11 endoxylanases releasing more products in synergy with the accessory enzymes from the more complex substrates. Aside from the insights into hemicellulose degradation by R. albus 8, this report should enhance our knowledge on designing effective enzyme cocktails for release of fermentable sugars in the biofuel industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147433PMC
http://dx.doi.org/10.1128/AEM.00353-11DOI Listing

Publication Analysis

Top Keywords

accessory enzymes
16
plant cell
12
multiple endoxylanases
8
rumen bacterium
8
ruminococcus albus
8
cell wall
8
module carbohydrate
8
enzymes
7
endoxylanases
5
bacterium
5

Similar Publications

Unlabelled: Microbial deconstruction of plant polysaccharides is important for environmental nutrient cycling, and bacteria proficient at this process have extensive suites of polysaccharide-specific enzymes. In the gram-negative saprophyte , genome annotation suggests that 17 genes are predicted to encode Carbohydrate-Active enZymes (CAZymes) with roles in cellulose degradation; however, previous work suggested that only a subset of these genes is essential. Building upon that work, here, we identify the required and minimally sufficient set of enzymes for complete degradation of cellulose using a combination of transcriptomics, gene deletion analysis, heterologous expression studies, and metabolite analysis.

View Article and Find Full Text PDF

To investigate multi-system involvement in Kennedy's disease and its association with disease progression. We retrospectively reviewed the clinical, laboratory, and electrophysiological data from 48 genetically confirmed patients with Kennedy's disease at the Department of Neurology, First Medical Center of the Chinese PLA General Hospital, between February 2016 and February 2024. The disease progression rate was calculated based on the functional scores at baseline and follow-up.

View Article and Find Full Text PDF

Objective: To identify genes related to eravacycline resistance in () and to provide a theoretical basis for the study of eravacycline resistance mechanisms in and the development of new antibiotics.

Methods: The study employed an integrated omics approach: (1) antimicrobial susceptibility profiling via broth microdilution to determine baseline MICs for eravacycline and comparator drugs; (2) Induction of resistance in clinical isolates (WJ_4, WJ_14, WJ_18) with low eravacycline MICs through serial passage in escalating drug concentrations; (3) Transcriptome sequencing (RNA-seq) and whole-genome sequencing (WGS) of -induced resistant strains (WJ_4a, WJ_14a, WJ_18a) and a clinical high-MIC isolate (WJ_97); (4) Bioinformatics analyses, including differential gene expression screening (with |log2(fold change)| > 2 and FDR-adjusted p < 0.05), SNP detection via GATK, and copy number variation (CNV) quantification using CCNE-acc to identify and compare resistance-related genetic alterations.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) is a causative agent of infectious mononucleosis and is strongly associated with Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. EBV encodes a deubiquitinating enzyme, BPLF1, which is important for infectious virus production, B-cell immortalization, and tumorigenesis. To elucidate BPLF1's role, an affinity-based mass spectrometry screen was performed, which suggested that BPLF1 and mTOR interact.

View Article and Find Full Text PDF

Gap-free comparative genomics uncover virulence factors for Fusarium wilt of watermelons.

PLoS Pathog

August 2025

Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.

Watermelon (Citrullus lanatus L.) is a globally important fruit crop, yet it is susceptible to devastating diseases such as vascular wilt caused by Fusarium oxysporum f. sp.

View Article and Find Full Text PDF