Publications by authors named "Roderick I Mackie"

The increasing global prevalence of diabetic nephropathy poses substantial health and economic burdens. Currently, effective anti-fibrotic therapies for managing kidney fibrosis associated with chronic kidney disease are lacking. This study reveals corisin, a microbiota-derived peptide, as a central driver in the progression of diabetic kidney fibrosis.

View Article and Find Full Text PDF

Background: Body weight is an important indicator of the overall health and production efficiency in broiler chickens. In broiler houses, body weight of chicks is variable despite the same genetics, hatching and feeding practices within a production system. The objective of this study was to investigate the intestinal microbiota and bile salt hydrolase (BSH) activity in slow and fast growing broiler chickens, which belonged to the 10 and 90 percentile body weight groups, respectively.

View Article and Find Full Text PDF

This paper examines several rumen bacteria in the Synergistota phylum, specifically focusing on their potential to detoxify harmful compounds found in plants grazed by ruminants. Synergistota bacteria ferment amino acids for energy, while rumen from which the phylum was named, can also metabolize toxins found in the forage plant (leucaena). Specifically, is able to detoxify mimosine, a non-protein amino acid in leucaena, by converting it into less harmful metabolites.

View Article and Find Full Text PDF

We report here the complete genome sequence of a type II methanotrophic bacterium, strain RIM, isolated from the soil surface at Urbana, Illinois. This genome was obtained via HiFi PacBio Sequel II sequencing.

View Article and Find Full Text PDF

This publication aims to provide guidelines of the knowledge required and the potential research to be conducted in order to understand the mode of action of antimethanogenic feed additives (AMFA). In the first part of the paper, we classify AMFA into 4 categories according to their mode of action: (1) lowering dihydrogen (H) production; (2) inhibiting methanogens; (3) promoting alternative H-incorporating pathways; and (4) oxidizing methane (CH). The second part of the paper presents questions that guide the research to identify the mode of action of an AMFA on the rumen CH production from 5 different perspectives: (1) microbiology; (2) cell and molecular biochemistry; (3) microbial ecology; (4) animal metabolism; and (5) cross-cutting aspects.

View Article and Find Full Text PDF

Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization.

View Article and Find Full Text PDF

This study sought to determine the relationship among broiler performance, organ development, and indicators of microbiota colonization. A total of 1,200 two-day-old male Ross 308 broiler chicks, divided among 3 cohorts of equal size, were housed in battery cages, and allotted based on body weight. On study d 11, birds were weighed, and birds with BW gain within the 10th and 90th percentiles were assigned to the Slow and Fast groups, respectively.

View Article and Find Full Text PDF

Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted.

View Article and Find Full Text PDF

Methanotrophs play a significant role in methane oxidation, because they are the only biological methane sink present in nature. The methane monooxygenase enzyme oxidizes methane or ammonia into methanol or hydroxylamine, respectively. While much is known about central carbon metabolism in methanotrophs, far less is known about nitrogen metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates two new bacterial isolates (AL01A and AL05G) from a Yellowstone Hot Spring, focusing on their ability to thrive in extreme acidity and heat, offering insights into their metabolic characteristics.
  • - The isolates were found to grow optimally at a pH of 3.5 and temperature of 55°C, with significant components in their membranes being ω-alicyclic fatty acids.
  • - Genomic analysis revealed that these bacteria have unique genes for carbon metabolism not present in a related methanotroph, as well as transporter systems for sulfur, indicating their potential roles in nutrient cycling in extreme geothermal environments.
View Article and Find Full Text PDF

Understanding the effects of dosing non-toxigenic Clostridia to cows is rare and has received little attention so far. In the present study, a total of eight lactating dairy cows were divided in two groups: control ( = 4) or Clostridia challenged (oral supplementation of five diverse strains of ,  = 4). Bacterial communities were analyzed by qPCR and next-generation sequencing (NGS) in the buccal mucosa as well as digesta and mucosal samples of the gastrointestinal (GI) tract from rumen to rectum (10 compartments), as well as fecal samples.

View Article and Find Full Text PDF

Antibodies targeting specific bacterial species could allow for modification of the rumen microbial population to enhance rumen fermentation. However, there is limited knowledge of targeted antibody effects on rumen bacteria. Therefore, our objective was to develop efficacious polyclonal antibodies to inhibit the growth of targeted cellulolytic bacteria from the rumen.

View Article and Find Full Text PDF

Methanotrophs are bacteria capable on growing on methane as their sole carbon source. They may provide a promising route for upgrading natural gas into more valuable fuels and chemicals. However, natural gas may contain significant quantities of hydrogen sulfide.

View Article and Find Full Text PDF

Fully understanding the dynamic distribution of the gut microbiota in pigs is essential, as gut microorganisms play a fundamental role in physiological processes, immunity, and the metabolism of nutrients by the host. Here, we first summarize the characteristics and the dynamic shifts in the gut microbial community of pigs at different ages based on the results of 63 peer-review publications. Then a meta-analysis based on the sequences from 16 studies with accession numbers in the GenBank database is conducted to verify the characteristics of the gut microbiota in healthy pigs.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis is an incurable disease of unknown etiology. Acute exacerbation of idiopathic pulmonary fibrosis is associated with high mortality. Excessive apoptosis of lung epithelial cells occurs in pulmonary fibrosis acute exacerbation.

View Article and Find Full Text PDF

Molecular hydrogen (H) and formate (HCOO) are metabolic end products of many primary fermenters in the mammalian gut. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H and/or formate accumulate within the gut ecosystem, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted.

View Article and Find Full Text PDF

Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9 °C, pH 2.

View Article and Find Full Text PDF

Disposal of electrons generated during the fermentation of ingested feed is a fundamental feature of anaerobic microbial gut ecosystems. Here, we focus on the well-studied rumen environment to highlight how electrons are transferred through anaerobic fermentation pathways and how manipulating this electron flow is important to reducing methane emissions from ruminants. Priorities for research that can accelerate understanding in this area are highlighted.

View Article and Find Full Text PDF

spp. of the human colonic microbiome degrade complex arabinoxylans from dietary fiber and release ferulic acid. Several studies have demonstrated the beneficial effects of ferulic acid.

View Article and Find Full Text PDF

Some Bacteroidetes and other human colonic bacteria can degrade arabinoxylans, common polysaccharides found in dietary fiber. Previous work has identified gene clusters (polysaccharide-utilization loci, PULs) for degradation of simple arabinoxylans. However, the degradation of complex arabinoxylans (containing side chains such as ferulic acid, a phenolic compound) is poorly understood.

View Article and Find Full Text PDF

The rumen harbors a complex microbial mixture of archaea, bacteria, protozoa, and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacterial populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen microbiota. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to degradation, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated for 48 h in nylon bags within the rumen of cannulated dairy cows.

View Article and Find Full Text PDF

Sugarcane bioethanol has favorable energy and greenhouse gas balance, although the production process generates several residues including vinasse, which deserves attention because of its significant methane (CH) emission during storage and transportation stages. Considering that CH emissions are dependent on the structure and abundance of microbial communities, we hypothesized that different vinasse transportation systems would harbor different microbial community composition, resulting in distinct CH patterns. To test this hypothesis, we used high-throughput 16S rRNA sequencing with real-time PCR to evaluate the composition and abundance of microorganisms in the two main systems of vinasse storage and transportation (i.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease of unknown etiology; however, apoptosis of lung alveolar epithelial cells plays a role in disease progression. This intractable disease is associated with increased abundance of Staphylococcus and Streptococcus in the lungs, yet their roles in disease pathogenesis remain elusive. Here, we report that Staphylococcus nepalensis releases corisin, a peptide conserved in diverse staphylococci, to induce apoptosis of lung epithelial cells.

View Article and Find Full Text PDF

Renewable fuels have gained importance as the world moves toward diversifying its energy portfolio. A critical step in the biomass-to-bioenergy initiative is deconstruction of plant cell wall polysaccharides to their unit sugars for subsequent fermentation to fuels. To acquire carbon and energy for their metabolic processes, diverse microorganisms have evolved genes encoding enzymes that depolymerize polysaccharides to their carbon/energy-rich building blocks.

View Article and Find Full Text PDF

Background: Sucrose is an attractive industrial carbon source due to its abundance and the fact that it can be cheaply generated from sources such as sugarcane. However, only a few characterized Escherichia coli strains are able to metabolize sucrose, and those that can are typically slow growing or pathogenic strains.

Methods: To generate a platform strain capable of efficiently utilizing sucrose with a high growth rate, adaptive laboratory evolution (ALE) was utilized to evolve engineered E.

View Article and Find Full Text PDF