98%
921
2 minutes
20
Interacting systems with K driven particle species on an open chain or chains that are coupled at the ends to boundary reservoirs with fixed particle densities are considered. We classify discontinuous and continuous phase transitions that are driven by adiabatic change of boundary conditions. We build minimal paths along which any given boundary-driven phase transition (BDPT) is observed and we reveal kinetic mechanisms governing these transitions. Combining minimal paths, we can drive the system from a stationary state with all positive characteristic speeds to a state with all negative characteristic speeds, by means of adiabatic changes of the boundary conditions. We show that along such composite paths, one generically encounters Z discontinuous and 2(K-Z) continuous BDPT's, with Z taking values 0≥Z≥K depending on the path. As model examples, we consider solvable exclusion processes with product measure states and K=1,2,3 particle species and a nonsolvable two-way traffic model. Our findings are confirmed by numerical integration of hydrodynamic limit equations and by Monte Carlo simulations. Results extend straightforwardly to a wide class of driven diffusive systems with several conserved particle species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.83.011130 | DOI Listing |
Cell
September 2025
Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, 46115 Alfara del Patriarca, Spain. Electronic address: j
Some mobile genetic elements spread among unrelated bacterial species through unknown mechanisms. Recently, we discovered that identical capsid-forming phage-inducible chromosomal islands (cf-PICIs), a new family of phage satellites, are present across multiple species and genera, raising questions about their widespread dissemination. Here, we have identified and characterized a new biological entity enabling this transfer.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna, Tenerife, Spain.
The 2021-eruption of Tajogaite (La Palma, Canary Islands) was associated with the formation of large amounts of respirable PM aerosols (smaller than 10 μm) that triggered air quality crisis and lockdowns for ∼35,000 persons. This study aims to quantify the contribution of the aerosol formation mechanisms to the volcanic PM concentrations. During the eruption and post-eruption, we monitored trace gases (SO, HF, HCl and NO), and the size distribution and chemical composition of falling-tephra and PM aerosols.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA.
Understanding how cells control their biophysical properties during development remains a fundamental challenge. While macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we found that tissues maintain mesoscale properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China. Electronic address:
Emodin is a natural anthraquinone derivative with poor water solubility, which limits its antibacterial activity. The purpose of this work is to investigate the antibacterial activity of emodin nanocrystals (EMD-NCs) with different particle sizes against Staphylococcus aureus (S. aureus) and explores its underlying mechanisms.
View Article and Find Full Text PDFVirology
September 2025
Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.
View Article and Find Full Text PDF