A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes.

Biomaterials

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.

Published: February 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate and rapid recognition and separation of multiple types of biological targets such as molecules, cells, bacteria or viruses from complex sample mixtures is of great importance for a wide range of diagnostic and therapeutic strategies. To achieve this goal, a set of fluorescent, magnetic, dual-encoded multifunctional bioprobes has been constructed by co-embedding different-sized quantum dots and varying amounts of γ-Fe(2)O(3) magnetic nanoparticles into swollen poly(styrene/acrylamide) copolymer nanospheres. The dual-encoded bioprobes, which possessed different photoluminescent property and magnetic susceptibility, were proven to be capable of simultaneously recognizing and separating multiple components from a complex sample when three kinds of lectins were used as the targets. The lectins were separated with high efficiency and kept their bioactivity during the process. Compared to the conventional batchwise separation, this method does not require a large number of sequential reaction steps, which is economical of time and can be very reagent-saving. By combining the multiplexing capability of quantum dots with the superparamagnetic properties of iron oxide nanoparticles, this dual-encoded technique is expected to open new opportunities in high-throughput and multiplex bioassays, such as cell sorting, proteomical and genomical applications, drug screening etc.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2010.10.015DOI Listing

Publication Analysis

Top Keywords

recognition separation
8
fluorescent magnetic
8
multifunctional bioprobes
8
complex sample
8
quantum dots
8
multicomponent recognition
4
separation system
4
system established
4
established fluorescent
4
magnetic
4

Similar Publications

Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.

View Article and Find Full Text PDF

This study investigates plastic food packaging (PFP) recycling symbols in Vietnam through field surveys, questionnaires and statistical and machine-learning models. Results show that 68.2% of shoppers correctly identified the recycling symbol, whereas 87.

View Article and Find Full Text PDF

Theoretical simulation-guided design and fabrication of molecularly imprinted hydrogels for selective osteopontin separation.

Food Res Int

November 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:

Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.

View Article and Find Full Text PDF

Our understanding of how the medial temporal lobe (MTL) contributes to human cognition has advanced enormously over the past half a century. My work in the 1990s characterizing the role of recollection and familiarity processes in episodic memory led me to study the MTL's role in these two memory processes. In the current paper, I provide a personal commentary in which I describe the motivating ideas, as well as the invaluable impact of mentors, colleagues, and students that led to a series of studies showing that conscious recollection is critically dependent on the hippocampus, whereas familiarity-based judgments are dependent on regions such as the perirhinal cortex.

View Article and Find Full Text PDF

Role of CPEBs in Learning and Memory.

J Neurochem

September 2025

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.

Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.

View Article and Find Full Text PDF