Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Growth differentiation factor 11 (GDF11) is one of the significant genes that control skeletal formation. Knockout of GDF11 function causes abnormal patterning of the anterior/posterior axial skeleton. The mRNA of GDF11 is initially translated to a precursor protein that undergoes a proteolytic cleavage to generate the C-terminal peptide or mature GDF11, and the N-terminal peptide named GDF11 propeptide. The propeptide can antagonize GDF11 activity in vitro. To investigate the effects of GDF11 propeptide on GDF11 function in vivo, we generated transgenic mice that over-express the propeptide cDNA in skeletal tissue. The transgenic mice showed formation of extra ribs on the seventh cervical vertebra (C7) as a result of transformation of the C7 vertebra into a thoracic vertebra. The GDF11 propeptide transgene mRNA was detected in tail tissue in embryos and was highly expressed in tail and calvaria bones after birth. A high frequency of C7 rib formation was noticed in the transgenic mouse line with a high level of transgene expression. The anterior boundaries of Hoxa-4 and Hoxa-5 mRNA in situ expressions showed cranial shifts from their normal prevertebra locations in transgenic embryos. These results demonstrated significant effects of GDF11 propeptide transgene on vertebral formation, which are likely occurring through depressing GDF11 function and altered locations of Hoxa-4 and Hoxa-5 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099245PMC
http://dx.doi.org/10.1002/mrd.21252DOI Listing

Publication Analysis

Top Keywords

gdf11 propeptide
16
gdf11 function
12
gdf11
11
growth differentiation
8
differentiation factor
8
seventh cervical
8
cervical vertebra
8
vertebra thoracic
8
thoracic vertebra
8
effects gdf11
8

Similar Publications

Growth differentiation factor 11 (GDF11) belongs to the transforming growth factor beta superfamily and participates in various pathophysiological processes. Initially, GDF11 was suggested to act as a rejuvenator by improving age-related phenotypes of the heart, brain, and skeletal muscle in aged mice. Recent studies demonstrate that GDF11 also serves as an adverse risk factor for human frailty and diseases.

View Article and Find Full Text PDF

Although growth/differentiation factor 11 (GDF11), growth/differentiation factor 8 (GDF8), and their circulating antagonists, which include GDF11 and GDF8 propeptides, follistatin (FST), WAP, Follistatin/Kazal, Immunoglobulin, Kunitz And Netrin Domain Containing (WFIKKN)1, and WFIKKN2, have been shown to influence skeletal muscle and aging in mice, the relationship of these circulating factors with human phenotypes is less clear. This study aimed to characterize the relationship between plasma GDF8, GDF11, FST, WFIKKN1, and WFIKKN2 concentrations with the decline of grip strength in 534 adults, ≥65 years, who participated in the Baltimore Longitudinal Study of Aging and had grip strength measured over time. Plasma GDF8 and GDF11 mature proteins, GDF8 and GDF11 propeptides, FST (isoform FST315 and cleaved form FST303), WFIKKN1, and WFIKKN2 concentrations were measured using selected reaction monitoring-tandem mass spectrometry at baseline.

View Article and Find Full Text PDF

TMEPAI/PMEPA1 Is a Positive Regulator of Skeletal Muscle Mass.

Front Physiol

November 2020

Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.

Inhibition of myostatin- and activin-mediated SMAD2/3 signaling using ligand traps, such as soluble receptors, ligand-targeting propeptides and antibodies, or follistatin can increase skeletal muscle mass in healthy mice and ameliorate wasting in models of cancer cachexia and muscular dystrophy. However, clinical translation of these extracellular approaches targeting myostatin and activin has been hindered by the challenges of achieving efficacy without potential effects in other tissues. Toward the goal of developing tissue-specific myostatin/activin interventions, we explored the ability of transmembrane prostate androgen-induced (TMEPAI), an inhibitor of transforming growth factor-β (TGF-β1)-mediated SMAD2/3 signaling, to promote growth, and counter atrophy, in skeletal muscle.

View Article and Find Full Text PDF

Myostatin Inhibitors: Panacea or Predicament for Musculoskeletal Disorders?

J Bone Metab

August 2020

Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.

Myostatin, also known as growth differentiation factor 8 (GDF8), is a transforming growth factor-β (TGF-β) family member that functions to limit skeletal muscle growth. Accordingly, loss-of-function mutations in myostatin result in a dramatic increase in muscle mass in humans and various animals, while its overexpression leads to severe muscle atrophy. Myostatin also exerts a significant effect on bone metabolism, as demonstrated by enhanced bone mineral density and bone regeneration in myostatin null mice.

View Article and Find Full Text PDF

Background: Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily. The GDF11 propeptide, which is derived from the GDF11 precursor protein, blocks the activity of GDF11 and its homolog, myostatin, which are both potent inhibitors of muscle growth. Thus, treatment with GDF11 propeptide may be a potential therapeutic strategy for diseases associated with muscle atrophy like sarcopenia and the muscular dystrophies.

View Article and Find Full Text PDF