Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is a central nervous system disorder pathologically characterized by senile plaques, neurofibrillary tangles, and synapse loss. A small percentage of individuals with normal antemortem psychometric scores, after adjustments for age and education, meet the neuropathological criteria for amnestic mild cognitive impairment (MCI) or AD; these individuals have been termed 'preclinical' or 'asymptomatic' AD (PCAD). In this study, we employed the immunochemical slot-blot method and two-dimensional gel-based redox proteomics to observe differences in protein levels and oxidative modifications between groups with equal levels of AD pathology who differ in regards to clinical symptoms of memory impairment. Results of global oxidative stress measurements revealed significantly higher levels of protein carbonyls in the MCI inferior parietal lobule (IPL) relative to PCAD (and controls), despite equal levels of neuropathology. Proteomics analysis of the IPL revealed differences in protein levels and specific carbonylation that are consistent with preservation of memory in PCAD and apparent memory decline in MCI. Our data suggest that marked changes occur at the protein level in MCI that may cause or reflect memory loss and other AD symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-2010-101083DOI Listing

Publication Analysis

Top Keywords

redox proteomics
8
proteomics analysis
8
brains subjects
8
amnestic mild
8
mild cognitive
8
cognitive impairment
8
alzheimer's disease
8
memory loss
8
differences protein
8
protein levels
8

Similar Publications

Anti-IgLON5 disease is an autoimmune encephalitis with more chronic presentation including memory decline, sleep disorder, bulbar symptoms and movement disorder. Post-mortem brains of patients with anti-IgLON5 disease show neurodegeneration with tau deposition sparking interest in this 'acquired tauopathy' as a disease model for neurodegeneration, yet mechanisms of neurodegeneration remain unknown. Using a reductionist human iPSC-derived neuron-antibody model, we applied proteomics approach, electrophysiology and live cell imaging.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Activity-Based Ubiquitin Probes Capture the Sulfenylated State of Deubiquitinases.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemo and Biosensing, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.

Activity-based ubiquitin probes (Ub-ABPs) are powerful tools for studying the functional landscape of deubiquitinases (DUBs). While most existing Ub probes have focused on examining the native state of DUBs, oxidative stress, especially in cancer and inflammatory contexts, can oxidize the catalytic cysteine of DUBs, significantly altering their activity. Here, we developed three novel ubiquitin-based activity probes (Ub-ABPs) to selectively trap the sulfenylated form of deubiquitinases (DUB-SOH).

View Article and Find Full Text PDF

Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.

Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.

View Article and Find Full Text PDF

This study establishes diethyl maleate (DEM) as a novel physiologically relevant oxidative stress model for meat science, uniquely recapitulating gradual glutathione depletion during natural spoilage. Using quantitative proteomics and biochemical analyses (0-48 h postmortem), we demonstrate that DEM-induced stress paradoxically enhances beef colour stability despite accelerated glycolysis (pH 5.6 ± 0.

View Article and Find Full Text PDF