Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-010-1286-7DOI Listing

Publication Analysis

Top Keywords

hydraulic conductivity
20
root hydraulic
12
aba
9
root aba
8
control water
8
water relations
8
increased evaporative
8
evaporative demand
8
extension growth
8
increased root
8

Similar Publications

To explore strategies for further reducing aeration energy consumption in the simultaneous nitrification and denitrification (SND) process, an SND reactor was constructed to treat low carbon-to-nitrogen (C/N) ratio domestic wastewater under ultra-low dissolved oxygen (DO) conditions (DO < 0.05 mg·L⁻). The effects of hydraulic retention time (HRT) and C/N ratio on nitrogen removal performance were systematically evaluated, and batch experiments were conducted to determine nitrification and denitrification rates.

View Article and Find Full Text PDF

Hydraulic constraints to stomatal conductance in flooded trees.

Oecologia

September 2025

School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.

Stomatal closure is a pervasive response among trees exposed to flooded soil. We tested whether this response is caused by reduced hydraulic conductance in the soil-to-leaf hydraulic continuum (k), and particularly by reduced root hydraulic conductance (k), which has been widely hypothesized. We tracked stomatal conductance at the leaf level (g) and canopy scale (G) along with physiological conditions in two temperate tree species, Magnolia grandiflora and Quercus virginiana, that were subjected to flood and control conditions in a greenhouse experiment.

View Article and Find Full Text PDF

Hematite-facilitated anaerobic oxidation of organics: Novel strategy to alleviate bioclogging in constructed wetlands.

Bioresour Technol

September 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:

Bioclogging from organic accumulation significantly limits efficiency and longevity of constructed wetlands (CWs). In this study, hematite was introduced to enhance the oxidation of organics by dissimilatory iron reduction (DIR). Compared to gravel CWs (G-CWs), hematite CWs (H-CWs) enhanced the removal of COD, ammonium, and phosphate by 12 %, 46 %, and 72 %, while reducing CH and NO emissions by 69 % and 36 %.

View Article and Find Full Text PDF

Background And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.

View Article and Find Full Text PDF

Accuracy of recording linear erosion using an unmanned aerial vehicle (UAV).

PLoS One

September 2025

Hydraulic Engineering and Water Management, School of Architecture and Civil Engineering, University of Applied Sciences, Saarbrücken, Germany.

Soil erosion is an ongoing environmental problem. To address this issue, calibrated erosion models are used to forecast areas vulnerable to erosion and to determine appropriate preventive measures. Model calibrations are based on erosion data recorded using different techniques such as photogrammetry from an unmanned aerial vehicle (UAV).

View Article and Find Full Text PDF