Adsorption of oxygen on copper in Cu/HZSM5 zeolites.

Phys Chem Chem Phys

Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

Published: June 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study focuses on the characterization of the active sites for oxygen adsorption in both copper-free and copper-containing HZSM5 zeolites. FTIR, EPR, EXAFS and UV-Vis measurements offer insight into the initial state of the catalyst before oxygen adsorption. Both liquid and solid state ion exchanged samples contain a certain amount of Cu(ii) and Cu(i) ions in the alpha3, alpha4 and gamma6 position, their population ratio depending on the ion exchange temperature. They are accessible for interaction with the adsorbate, as the copper-oxygen spin exchange demonstrates. Both the sample magnetization and the EXAFS analysis indicate that 10-30% of the Cu(ii) exists in the form of oxygen bridged Cu-Cu pairs. UV-Vis measurements prove that two different antiferromagnetically coupled copper peroxide complexes are formed during the sample preparation process, the bis(mu-oxo)- and (mu-eta(2):eta(2)-peroxo) dimers. One of the complexes is susceptible to oxygen adsorption, which cleaves it irreversibly into two individual Cu(ii)-O(2)(-) units, while Cu(i) ions are oxidised to the same species. The Brønsted acid sites are also able to adsorb oxygen both at room and low temperatures. The presence of the different active sites may be an explanation for the high catalytic activity of the Cu/HZSM5 zeolite. The Brønsted sites near copper centers could protonate the peroxide complexes, leading to the in situ formation of hydrogen peroxide, a common oxidant. This peroxide would be a highly active species for catalytic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c000750aDOI Listing

Publication Analysis

Top Keywords

oxygen adsorption
12
active sites
8
uv-vis measurements
8
cui ions
8
peroxide complexes
8
oxygen
5
adsorption
4
adsorption oxygen
4
oxygen copper
4
copper cu/hzsm5
4

Similar Publications

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.

View Article and Find Full Text PDF

A dual-engineered covalent organic framework with charge-oxygen synergy promotes photocatalytic dipolar [3 + 2] cycloaddition.

Chem Sci

August 2025

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China

The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.

View Article and Find Full Text PDF

The role of electronic spin in electrocatalysis has led to the emerging field of "spin-dependent electrocatalysis". While spin effects in individual active sites have been well understood, spin coupling among multiple sites remains underexplored in electrocatalysis, which will bring forth new active sites and mechanisms. In this work, we propose a general theory to understand the spin coupling in electrocatalysis.

View Article and Find Full Text PDF

Waste biomass has aroused increasing interest in the production of low-cost materials for CO adsorption and supercapacitors. One of the primary facets in this regard is to develop nanoporous carbons with controlled porosity and high surface area. Herein, waste wood chips are used to synthesize nanoporous biocarbons via a solid-state KOH-based chemical activation.

View Article and Find Full Text PDF