Gene expression mediated by dendrimer/DNA complexes encapsulated in biodegradable polymer microspheres.

J Microencapsul

Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, PR China.

Published: September 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A convenient and effective 'ultrasonic dispersion method' was used to fabricate vector/DNA complexes encapsulated microspheres. Polyamidoamine (PAMAM) dendrimer/DNA complexes protected by a water-soluble polymer, poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA), were encapsulated in a polymer film mainly composed of cholic acid functionalized star poly(DL-lactide), which degraded through surface erosion mechanism with a fast degradation rate. The PAMAM/DNA complexes encapsulated polymer film was then immersed in ethanol and ultrasonicated to afford the microspheres. The in vitro gene transfections showed PAMAM/DNA complexes protected by PHEA exhibited a much higher transfection activity compared with PAMAM/DNA complexes without the protection by PHEA. The expressions of pGL3-Luc in HEK293 cells could be effectively mediated by the polymer film and microspheres with the presence of PHEA. The ultrasonic dispersion method, which did not involve toxic organic solvents, could keep the bioactivity of DNA and offer good control over the size of microspheres.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02652040903215963DOI Listing

Publication Analysis

Top Keywords

complexes encapsulated
12
polymer film
12
pamam/dna complexes
12
dendrimer/dna complexes
8
complexes protected
8
encapsulated polymer
8
complexes
6
polymer
5
microspheres
5
gene expression
4

Similar Publications

Introduction: Online community-based exercise (CBE) is a rehabilitation strategy that can promote health outcomes among people living with HIV. We aimed to describe experiences implementing a community-based exercise (CBE) intervention with adults living with HIV.

Methods: We conducted a longitudinal qualitative descriptive study involving interviews with adults living with HIV and persons implementing an online tele-coaching CBE intervention.

View Article and Find Full Text PDF

Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.

View Article and Find Full Text PDF