98%
921
2 minutes
20
Itch is the least well understood of all the somatic senses, and the neural circuits that underlie this sensation are poorly defined. Here we show that the atonal-related transcription factor Bhlhb5 is transiently expressed in the dorsal horn of the developing spinal cord and appears to play a role in the formation and regulation of pruritic (itch) circuits. Mice lacking Bhlhb5 develop self-inflicted skin lesions and show significantly enhanced scratching responses to pruritic agents. Through genetic fate-mapping and conditional ablation, we provide evidence that the pruritic phenotype in Bhlhb5 mutants is due to selective loss of a subset of inhibitory interneurons in the dorsal horn. Our findings suggest that Bhlhb5 is required for the survival of a specific population of inhibitory interneurons that regulate pruritus, and provide evidence that the loss of inhibitory synaptic input results in abnormal itch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856621 | PMC |
http://dx.doi.org/10.1016/j.neuron.2010.02.025 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.
Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.
View Article and Find Full Text PDFNeuropsychopharmacology
September 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.
View Article and Find Full Text PDFCurr Biol
July 2025
Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden. Electronic address:
The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.
View Article and Find Full Text PDFFront Neurol
August 2025
Department of Neurosurgery, Haikou Hospital Affiliated with Xiangya Medical College, Central South University, Haikou, China.
As an emerging therapeutic strategy, stem cell transplantation has demonstrated promising potential in the management of refractory epilepsy. Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, affects approximately one-third of patients worldwide who exhibit resistance to existing antiepileptic drugs (AEDs). Consequently, exploring novel treatment modalities is imperative.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Neuroscience and Physiology.
Cannabidiol (CBD) decreases seizures in patients with severe pediatric-onset epilepsies including Dravet, Lennox-Gastaut, and Tuberous Sclerosis syndromes. However, the effects of CBD on neuronal activity and circuits remain obscure. In the mouse hippocampus, we found that CBD causes a GPR55-independent decrease in CA1 pyramidal neuron firing frequency and a GPR55-dependent reduction in CA3 to CA1 hippocampal activity propagation.
View Article and Find Full Text PDF