Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background, Aim And Scope: The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract.

Materials And Methods: In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air.

Results: For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p < 0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p < 0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM(2.5) was inversely correlated with the indoor to outdoor PM(2.5) ratio (I/O ratio; r = -0.49, p < 0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p < 0.01).

Discussion And Conclusions: The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles.

Recommendations And Perspectives: The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimising the adverse health effects on school children.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-010-0306-2DOI Listing

Publication Analysis

Top Keywords

outdoor pm25
20
i/o ratio
20
particle number
12
air pollution
12
indoor outdoor
12
001 indoor
12
outdoor
10
indoor
10
pm25
9
concentrations pm25
8

Similar Publications

A survey of key indoor air quality (IAQ) parameters and resident health was carried out in 72 apartments within a single low-income senior housing building in Phoenix, Arizona. Air sampling was carried out simultaneously with a questionnaire on personal habits and general health of residents. Mean PM10 concentrations are 66 +/- 16, 58 +/- 13, and 24 +/- 3 microg/m3 and mean PM2.

View Article and Find Full Text PDF

Objectives: This study assessed personal exposure of pregnant women to fine particles (PM(25)) and benzo[a]pyrene (B[a]P) and the relationship between pollutant concentrations in ambient and indoor air.

Materials And Methods: In a group of 78 pregnant women, simultaneous 48 h measurements of personal, indoor, and outdoor exposure to PM(25) and B[a]P were carried out in the second trimester of pregnancy. The results show that participants were exposed to varying concentrations of PM(25) and B[a]P, with higher exposure in the winter season.

View Article and Find Full Text PDF

The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

J Air Waste Manag Assoc

February 2006

Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta GA 30322, USA.

Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes.

View Article and Find Full Text PDF

With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002.

View Article and Find Full Text PDF

Characterization of emissions from burning incense.

Sci Total Environ

August 2002

US Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC 27711, USA.

The primary objective of this study was to improve the characterization of particulate matter emissions from burning incense. Emissions of particulate matter were measured for 23 different types of incense using a cyclone/filter method. Emission rates for PM2.

View Article and Find Full Text PDF