98%
921
2 minutes
20
Cross-linked functional polymers (functional resins) are versatile, designable and useful supports for metal nanoclusters that are able to provide reasonably thermally and mechanically stable multi-functional metal catalysts characterized by good activity and selectivity. The paper reviews authors' contributions to the field from the early 1990s to the present.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2009.0278 | DOI Listing |
J Chem Theory Comput
September 2025
Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä FI 40014, Finland.
-Heterocyclic carbene (NHC)-protected gold nanoclusters (AuNCs) have emerged as promising candidates for biomedical applications due to their high stability and strong photoluminescence. However, their integration into atomistic molecular dynamics (MD) simulations, which facilitates an understanding of their behavior in biological environments, has been hindered by the lack of reliable force field parameters. Here, we present a new set of parameters for classical MD simulations of NHC-protected AuNCs, fully compatible with the AMBER force field.
View Article and Find Full Text PDFTop Curr Chem (Cham)
September 2025
Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
Controlling the size of gold nanoparticles (AuNPs) has been critical in diagnostics, biomolecular sensing, targeted therapy, wastewater treatment, catalysis, and sensing applications. Ultrasmall AuNPs (uAuNPs), with sizes Ranging from 2 to 5 nm, and gold nanoclusters (AuNCs), with sizes less than 2 nm, are often dealt with interchangeably in the literature, making it challenging to review them separately. Although they are grouped in our discussion, their chemical and physical properties differ significantly, partly due to their electronic properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
Electrochemiluminescence (ECL) is rapidly emerging as an excellent electrochemical analytical technique for the specific and sensitive detection of various biomarkers and hazardous trace metals. Among ECL emitters, gold nanoclusters (AuNCs) have proven to be excellent luminophores due to their remarkable luminescent properties, stability, and biocompatibility. However, the low ECL efficiency of AuNCs precludes their application in ultrasensitive biosensing.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
Organic ligand-protected metal nanoclusters feature ultrasmall size, well-defined compositions, and diverse chiral structures. They have the potential to combine the advantages of asymmetric organocatalysis and nanometal catalysis. The major challenge is designing and synthesizing appropriate metal nanocluster structures for achieving high catalytic activity and excellent enantioselectivity.
View Article and Find Full Text PDFACS Cent Sci
August 2025
School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
Atomically precise nanoclusters are desirable for understanding the structure-property relationships in the electrocatalytic CO reduction reaction (eCORR), but suitable related models are lacking, especially those of low- or zerovalent noble metal nanoclusters and their alloyed analogues. We first developed a photochemical method toward silver nanocluster Ag(4- BuPhC≡C)(Dpppe)(SbF) ( -) and then related copper-doped alloyed nanocluster AgCu(4- BuPhC≡C)(Dpppe)Cl(SbF) ( -). Herein, we present a larger alloyed nanocluster, AgCu(4- BuPhC≡C)(Dpppe)(SbF) ( -) and investigate the relationship between the structures and the eCORR performance of those related nanoclusters.
View Article and Find Full Text PDF