Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During the latter stages of development in fleshy fruit, water flow through the xylem declines markedly and the requirements of transpiration and further expansion are fulfilled primarily by the phloem. We evaluated the hypothesis that cessation of water transport through the xylem results from disruption or occlusion of pedicel and berry xylem conduits (hydraulic isolation). Xylem hydraulic resistance (R(h)) was measured in developing fruit of grape (Vitis vinifera 'Chardonnay') 20 to 100 d after anthesis (DAA) and compared with observations of xylem anatomy by light and cryo-scanning electron microscopy and expression of six plasma membrane intrinsic protein (PIP) aquaporin genes (VvPIP1;1, VvPIP1;2, VvPIP1;3, VvPIP2;1, VvPIP2;2, VvPIP2;3). There was a significant increase in whole berry R(h) and receptacle R(h) in the latter stages of ripening (80-100 DAA), which was associated with deposition of gels or solutes in many receptacle xylem conduits. Peaks in the expression of some aquaporin isoforms corresponded to lower whole berry R(h) 60 to 80 DAA, and the increase in R(h) beginning at 80 DAA correlated with decreases in the expression of the two most predominantly expressed PIP genes. Although significant, the increase in berry R(h) was not great enough, and occurred too late in development, to explain the decline in xylem flow that occurs at 60 to 75 DAA. The evidence suggests that the fruit is not hydraulically isolated from the parent plant by xylem occlusion but, rather, is "hydraulically buffered" by water delivered via the phloem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773088PMC
http://dx.doi.org/10.1104/pp.109.143172DOI Listing

Publication Analysis

Top Keywords

hydraulic isolation
8
xylem
8
xylem conduits
8
increase berry
8
daa
5
vascular function
4
function grape
4
grape berries
4
berries development
4
development relevance
4

Similar Publications

Bentonite materials are extensively used in cutoff walls at landfill sites. This study calculates the stress and permeability characteristics of bentonite materials using the piezocone penetration test (CPTU) and ABAQUS simulations. The lateral effective stress of bentonite materials is evaluated using arching models, lateral squeezing models, and a modified lateral squeezing model.

View Article and Find Full Text PDF

Floods and droughts have received substantial attention in the hydro-meteorological community as isolated phenomena. However, abrupt transitions between these two extremes-termed Drought-Flood Abrupt Alternation Events (DFAAEs)-remain understudied despite their heightened destructiveness, often resulting in more severe impacts than standalone droughts or floods. Accurate identification and classification of DFAAEs are critical for risk assessment and forecasting, yet existing methods suffer from technical limitations such as reliance on empirical parameters and unboundedness.

View Article and Find Full Text PDF

This study aims to isolate and optimize the production of L-asparaginase from fungal strains derived from Algerian Saharan plants, and evaluate the reduction of acrylamide formation in food products. L-asparaginase has frequently been used to treat childhood acute lymphoblastic leukemia. It catalyzes the hydrolysis of asparagine and glutamine into aspartic acid and ammonia.

View Article and Find Full Text PDF

This study developed a halotolerant composite bio-agent (SND223) containing Acinetobacter B2, B3, and Zobellella sp. MAD-44 (2:2:3) for saline aquaculture wastewater treatment. Optimised at carbon-to-nitrogen (C/N) 10, 150 r/m, and 30 °C, SND223 achieved complete ammonia (100 %) and high nitrate (97.

View Article and Find Full Text PDF

Background: Computational fluid dynamics (CFD) has become an essential design tool for ventricular assist devices (VADs), where the goal of maximizing performance often conflicts with biocompatibility. This tradeoff becomes even more pronounced in pediatric applications due to the stringent size constraints imposed by the smaller patient population. This study presents an automated CFD-driven shape optimization of a new intermediate diffuser stage for the PediaFlow pediatric VAD, positioned immediately downstream of the impeller to improve pressure recovery.

View Article and Find Full Text PDF