Publications by authors named "Xiaoqian Cheng"

This study developed a halotolerant composite bio-agent (SND223) containing Acinetobacter B2, B3, and Zobellella sp. MAD-44 (2:2:3) for saline aquaculture wastewater treatment. Optimised at carbon-to-nitrogen (C/N) 10, 150 r/m, and 30 °C, SND223 achieved complete ammonia (100 %) and high nitrate (97.

View Article and Find Full Text PDF

As climate change affects the physicochemical properties of coastal water, the resulting element re-exposure may override the emission reductions achieved by human pollution control efforts. Here, we conduct an analysis the water quality-climate effect over eight consecutive years from 2015 to 2022 along the South China coast combined with CMIP6 Scenario Model Intercomparison Project. Then we utilized a data-driven model to predict the concentrations of trace metals and nutrients over the next 80 years.

View Article and Find Full Text PDF

Fluctuations in salinity have a significant impact on the ability of microorganisms to degrade target pollutants during water treatment. However, the interactions between salinity and microorganisms in industrial wastewater treatment have been explored in only a limited number of studies. Therefore, taking the actual coking wastewater treatment project as an example, the internal relationship between salinity, microbial community and pollutant removal was explored, and the technology salt reduction strategy was put forward.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) can lead to intestinal injury, endotoxemia, and disturbance of intestinal flora. Additionally, as a crucial component of the endocannabinoid system, some studies have demonstrated that cannabinoid 1 (CB1) receptors are closely linked to the multiple organ dysfunction triggered by OSA. However, the role of the CB1 receptor in alleviating OSA-induced colon injury remains unclear.

View Article and Find Full Text PDF

Local regional recurrence (LRR) remains the primary cause of treatment failure in solid tumors despite advancements in cancer therapies. Canady Helios Cold Plasma (CHCP) is a novel Cold Atmospheric Plasma device that generates an Electromagnetic Field and Reactive Oxygen and Nitrogen Species to induce cancer cell death. In the first FDA-approved Phase I trial (March 2020-April 2021), 20 patients with stage IV or recurrent solid tumors underwent surgical resection combined with intra-operative CHCP treatment.

View Article and Find Full Text PDF

With the increase of global demand for cash crops, a large of cash crop waste was produced and caused severe environmental issues. To produce Agricultural Jiaosu (AJ) using these wastes is a sustainable waste disposal method. However, the fermentation mechanism, metabolites, and microbial characteristics of AJ fermented with different substrates remain unclear.

View Article and Find Full Text PDF

Soft tissue sarcomas (STS) are a rare and highly heterogeneous group of solid tumors, originating from various types of connective tissue. Complete removal of STS by surgery is challenging due to the anatomical location of the tumor, which results in tumor recurrence. Additionally, current polychemotherapeutic regimens are highly toxic with no rational survival benefit.

View Article and Find Full Text PDF

Systematically analyzing the problem of heavy metals in the municipal sludge, a meta-analysis of nine metals was undertaken to distinguish the sources and sinks of those with the impact of their accumulation on the environment. Municipal sludge was rich in N, P and K nutrients, was found to contain heavy metals comprising the descending order Zn > Mn > Cu > Cr > Pb > Ni > As > Cd > Hg. The forms, in which heavy metals accumulated in geographical regions, were characterized.

View Article and Find Full Text PDF

Root rot caused by the pathogenic fungi of the genus poses a great threat to the yield and quality of medicinal plants. The application of Agricultural Jiaosu (AJ), which contains beneficial microbes and metabolites, represents a promising disease control strategy. However, the action-effect of AJ on root rot disease remains unclear.

View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer death among women. Triple-negative breast cancer (TNBC) has a poor prognosis and frequently relapses early compared with other subtypes. The Cold Atmospheric Plasma (CAP) is a promising therapy for prognostically poor breast cancer such as TNBC.

View Article and Find Full Text PDF

Background: The node of the first fruiting branch (NFFB) is an important precocious trait in cotton. Many studies have been conducted on the localization of quantitative trait loci (QTLs) and genes related to fiber quality and yield, but there has been little attention to traits related to early maturity, especially the NFFB, in cotton.

Results: To identify the QTL associated with the NFFB in cotton, a BCF population comprising 278 individual plants was constructed.

View Article and Find Full Text PDF

Breast cancer is the most common cancer among women worldwide. Its molecular receptor marker status and mutational subtypes complicate clinical therapies. Cold atmospheric plasma is a promising adjuvant therapy to selectively combat many cancers, including breast cancer, but not normal tissue; however, the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a rare biliary tract cancer with a low five-year survival rate and high recurrence rate after surgical resection. Currently treatment approaches include systemic chemotherapeutics such as FOLFIRINOX, a chemotherapy regimen is a possible treatment for severe CCA cases. A limitation of this chemotherapy regimen is its toxicity to patients and adverse events.

View Article and Find Full Text PDF

MADS-box gene family plays an important role in the molecular regulatory network of flower development. APETALA1 (AP1), a MADS-box gene, plays an important role in the development of flower organs. Although many studies about MADS-box family genes have been reported, the function of AP1 is still not clear in cotton.

View Article and Find Full Text PDF

A novel highly controllable process of Carbon Encapsulated Magnetic Nanoparticles (CEMNs) synthesis in arc discharge plasma has been developed. In this work, both the size distribution and the purity of the CEMNs have been made more controllable by adding an external magnetic field. It is shown that with the increase of the external magnetic field, the CEMNs get a better separation from the carbon impurities and the size distribution become narrower.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) treatment is a rapidly expanding and emerging technology for cancer treatment. Direct CAP jet irradiation is limited to the skin and it can also be invoked as a supplement therapy during surgery as it only causes cell death in the upper three to five cell layers. However, the current cannulas from which the plasma emanates are too large for intracranial applications.

View Article and Find Full Text PDF

It has been reported since late 1970 that magnetic field interacts strongly with biological systems. Cold atmospheric plasma (CAP) has also been widely studied over the past few decades in physics, biology, and medicine. In this study, we propose a novel idea to combine static magnetic field (SMF) with CAP as a tool for cancer therapy.

View Article and Find Full Text PDF

Unlabelled: Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface.

View Article and Find Full Text PDF

Nonthermal atmospheric plasma (NTAP) can be applied to living tissues and cells as a novel technology for cancer therapy. The authors report on a NTAP argon solution generated in deionized (DI) water for treating human gastric cancer cells (NCI-N87). Our findings show that the plasma generated in DI water with 30-min duration has the strongest effect on apoptosis in precultured human gastric cancer cells.

View Article and Find Full Text PDF

Selectively treating tumor cells is the ongoing challenge of modern cancer therapy. Recently, cold atmospheric plasma (CAP), a near room-temperature ionized gas, has been demonstrated to exhibit selective anticancer behavior. However, the mechanism governing such selectivity is still largely unknown.

View Article and Find Full Text PDF

To date, the significant anti-cancer capacity of cold atmospheric plasma (CAP) on dozens of cancer cell lines has been demonstrated in vitro and in mice models. Conventionally, CAP was directly applied to irradiate cancer cells or tumor tissue. Over past three years, the CAP irradiated media was also found to kill cancer cells as effectively as the direct CAP treatment.

View Article and Find Full Text PDF

Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties.

View Article and Find Full Text PDF

Objective: Cold atmospheric plasma (CAP) has recently been shown to selectively target cancer cells with minimal effects on normal cells. We systematically assessed the effects of CAP in the treatment of glioblastoma.

Methods: Three glioma cell lines, normal astrocytes, and endothelial cell lines were treated with CAP.

View Article and Find Full Text PDF

The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation.

View Article and Find Full Text PDF

Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that the cold plasma induced cell death. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. In this paper, we seek to determine a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of the plasma, including treatment time, voltage, flow-rate and plasma-gas composition.

View Article and Find Full Text PDF