Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

J Biomed Mater Res A

Department of Chemical, Biomedical and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.

Published: May 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32591DOI Listing

Publication Analysis

Top Keywords

scaffolds
18
tissue engineering
12
fiber coating
12
pcl scaffolds
12
proliferation differentiation
12
spiral-structured nanofibrous
8
nanofibrous scaffolds
8
bone tissue
8
spiral-structured scaffolds
8
scaffolds fiber
8

Similar Publications

Synthesis of 2-Acyltryptamines through an Unexpected Brønsted Acid Catalyzed Formal 1,5-Migration of Functional Group from Indole-Tethered Ynamides.

J Org Chem

September 2025

Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, University Engineering Research Center for Chemistry of Characteristic Medicinal Resources (Guangxi),

Herein, we have developed a Brønsted acid catalyzed 1,5-migration of functional groups from indole-tethered ynamides to prepare a variety of 2-acyltryptamines in good to excellent yields with high site-selectivity at the C2-position of indoles. Mechanistic studies revealed that the reaction underwent an intramolecular cyclization, 1,2-migration of the vinyl group, and C-N bond cleavage by hydrolysis in a one pot. The reaction features broad substrate scope, good functional group compatibility, 1,5-migration of functional groups, C-N bond cleavage to form C-C bond, and diverse 2-acyltryptamine scaffolds.

View Article and Find Full Text PDF

β-Adrenergic Receptors - Not Always Outside-In.

Physiology (Bethesda)

September 2025

Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304.

Canonical activation of G-protein coupled receptors (GPCRs) by hormone binding occurs at the plasma membrane, resulting in the diffusion of second messengers to intracellular effector sites throughout the cell. In contrast, recent evidence suggests that functional GPCRs can induce signaling from distinct intracellular domains, contributing to specificity in signaling. Functional adrenergic receptors have been identified at intracellular sites in the cardiac myocyte such as endosomes, the sarcoplasmic reticulum, the Golgi and the inner nuclear membrane.

View Article and Find Full Text PDF

Choral harmony: the role of collective singing in ritual, cultural identity and cognitive-affective synchronisation in the age of AI.

Disabil Rehabil Assist Technol

September 2025

School of Drama, Film and Television, Shenyang Conservatory of Music, Shenyang, China.

This study examines how choral singing functions as a mechanism for sustaining ritual practice and reinforcing cultural identity. By integrating perspectives from musicology, social psychology, and cognitive science, it explores how collective vocal performance supports emotional attunement, group cohesion, and symbolic memory in culturally diverse contexts. A mixed-methods approach was applied, combining ethnographic observation, survey-based data, and cognitive measures with AI-informed frameworks such as voice emotion recognition and neural synchrony modeling.

View Article and Find Full Text PDF

Rational assembly of 3D network materials and electronics through tensile buckling.

Sci Adv

September 2025

Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.

Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.

View Article and Find Full Text PDF