Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

hERG1 is a member of the cyclic nucleotide binding domain family of K(+) channels. Alignment of cyclic nucleotide binding domain channels revealed an evolutionary conserved sequence HwX(A/G)C in the S5 domain. We reasoned that histidine 562 in hERG1 could play an important structure-function role. To explore this role, we created in silica models of the hERG1 pore domain based on the KvAP crystal structure with Rosetta-membrane modeling and molecular-dynamics simulations. Simulations indicate that the H562 residue in the S5 helix spans the gap between the S5 helix and the pore helix, stabilizing the pore domain, and that mutation at the H562 residue leads to a disruption of the hydrogen bonding to T618 and S621, resulting in distortion of the selectivity filter. Analysis of the simulated point mutations at positions 562/618/621 showed that the reciprocal double mutations H562W/T618I would partially restore the orientation of the 562 residue. Matching hydrophobic interactions between mutated W562 residue and I618 partially compensate for the disrupted hydrogen bonding. Complementary in vitro electrophysiological studies confirmed the results of the molecular-dynamics simulations on single mutations at positions 562, 618, and 621. Experimentally, mutations of the H562 to tryptophan produced a functional channel, but with slowed deactivation and shifted V(1/2) of activation. Furthermore, the double mutation T618I/H562W rescued the defects seen in activation, deactivation, and potassium selectivity seen with the H562W mutation. In conclusion, interactions between H562 in the S5 helix and amino acids in the pore helix are important determinants of hERG1 potassium channel function, as confirmed by theory and experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711401PMC
http://dx.doi.org/10.1016/j.bpj.2009.01.028DOI Listing

Publication Analysis

Top Keywords

pore helix
12
interactions h562
8
h562 helix
8
t618 s621
8
helix determinants
8
determinants herg1
8
herg1 potassium
8
potassium channel
8
cyclic nucleotide
8
nucleotide binding
8

Similar Publications

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF

Potent and selective binders of the key proapoptotic proteins BAK and BAX have not been described. We use computational protein design to generate high affinity binders of BAK and BAX with greater than 100-fold specificity for their target. Both binders activate their targets when at low concentration, driving pore formation, but inhibit membrane permeabilization when in excess.

View Article and Find Full Text PDF

Conformational dynamics underlying slow inactivation in voltage-gated sodium channels.

bioRxiv

August 2025

Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110 USA.

Voltage-gated sodium (Nav) channels initiate and propagate action potentials in many excitable cells. Upon repetitive activation, the fraction of Nav channels available for excitation gradually decreases on a timescale ranging from seconds to minutes, a phenomenon known as slow inactivation. This process is crucial for regulating cellular excitability and firing patterns.

View Article and Find Full Text PDF

This study modified corn, oat, barley, and buckwheat starches using a Henan-specific sourdough starter, revealing that the initial starch architecture governs differentiated functional transformations. Pore-dominant starches (corn/buckwheat) underwent "inside-out" enzymatic pathways-corn starch exhibited a 38.21% reduced particle size through pore expansion, with long amylopectin chain degradation forming thermally stable gels, establishing it as an ideal base for anti-staling sauces and frozen dough.

View Article and Find Full Text PDF