Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To assess the accuracy and patient compliance in using a novel home blood pressure monitoring device in high-risk pregnancy.

Methods: Device accuracy was assessed according to the British Hypertension Society protocol in 45 pregnant women, including 15 with preeclampsia. Twenty-one high-risk pregnant women used the device in addition to their antenatal care.

Results: The device achieved a mean difference +/- SD of 0.4 +/- 7.3/-0.4 +/- 5.5 mmHg (pregnancy) and -2.6 +/- 7.0/0.8 +/- 4.4 mmHg (preeclampsia) for systolic/diastolic pressure. Eighty-one percent of women did at least 6 measurements/day and all women did at least 2 measurements/week.

Conclusion: The Microlife WatchBP Home is accurate for use in pregnancy and increases surveillance in compliant patients.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10641950802601286DOI Listing

Publication Analysis

Top Keywords

monitoring device
8
microlife watchbp
8
pregnant women
8
+/- mmhg
8
device
5
+/-
5
validation compliance
4
compliance monitoring
4
device pregnancy
4
pregnancy microlife
4

Similar Publications

All-In-One Iontronic Sensing Aligner for High-Precision 3D Orthodontic Force Monitoring.

Adv Sci (Weinh)

September 2025

Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key

Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.

View Article and Find Full Text PDF

A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP optoacoustic and fluorescence imaging.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.

View Article and Find Full Text PDF

Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.

View Article and Find Full Text PDF

A 3D printed platform for sample treatment and detection of phytic acid in spinach leaves using a paper-based electrochemical biosensor.

Biosens Bioelectron

August 2025

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, via Bitonto 139, 00133, Rome, Italy. Electronic address:

Phytic acid is a phosphorylated derivative of myo-inositol that is ubiquitous in plants and serves as the primary storage form of phosphorus. In human nutrition, phytic acid is considered an anti-nutrient because it chelates essential minerals, including calcium, iron, and zinc. This binding action reduces the bioavailability of these metals, highlighting the importance of monitoring phytic acid in food.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) and heart failure (HF) frequently coexist in patients, with the development of AF often preceding HF decompensation. We sought to evaluate whether daily remote monitoring of ICD parameters could predict AF occurrence using machine learning techniques in a real-world cohort.

Methods: Data from patients with primary prevention ICDs transmitted daily to the Northwell centralized remote monitoring center between 2012 and 2021 were extracted.

View Article and Find Full Text PDF