Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A survey of computed mechanisms for C-F bond activation at the 4-position of pentafluoropyridine by the model zero-valent bis-phosphine complex, [Pt(PH3)(PH2Me)], reveals three quite distinct pathways leading to square-planar Pt(II) products. Direct oxidative addition leads to cis-[Pt(F)(4-C5NF4)(PH3)(PH2Me)] via a conventional 3-center transition state. This process competes with two different phosphine-assisted mechanisms in which C-F activation involves fluorine transfer to a phosphorus center via novel 4-center transition states. The more accessible of the two phosphine-assisted processes involves concerted transfer of an alkyl group from phosphorus to the metal to give a platinum(alkyl)(fluorophosphine), trans-[Pt(Me)(4-C5NF4)(PH3)(PH2F)], analogues of which have been observed experimentally. The second phosphine-assisted pathway sees fluorine transfer to one of the phosphine ligands with formation of a metastable metallophosphorane intermediate from which either alkyl or fluorine transfer to the metal is possible. Both Pt-fluoride and Pt(alkyl)(fluorophosphine) products are therefore accessible via this route. Our calculations highlight the central role of metallophosphorane species, either as intermediates or transition states, in aromatic C-F bond activation. In addition, the similar computed barriers for all three processes suggest that Pt-fluoride species should be accessible. This is confirmed experimentally by the reaction of [Pt(PR3)2] species (R = isopropyl (iPr), cyclohexyl (Cy), and cyclopentyl (Cyp)) with 2,3,5-trifluoro-4-(trifluoromethyl)pyridine to give cis-[Pt(F){2-C5NHF2(CF3)}(PR3)2]. These species subsequently convert to the trans-isomers, either thermally or photochemically. The crystal structure of cis-[Pt(F){2-C5NHF2(CF3)}(P iPr3)2] shows planar coordination at Pt with r(F-Pt) = 2.029(3) A and P(1)-Pt-P(2) = 109.10(3) degrees. The crystal structure of trans-[Pt(F){2-C5NHF2(CF3)}(PCyp3)2] shows standard square-planar coordination at Pt with r(F-Pt) = 2.040(19) A.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja8046238DOI Listing

Publication Analysis

Top Keywords

fluorine transfer
12
c-f activation
8
oxidative addition
8
mechanisms c-f
8
c-f bond
8
bond activation
8
transition states
8
crystal structure
8
coordination rf-pt
8
competing c-f
4

Similar Publications

A screening of organic dyes has led to the discovery of gallocyanine as an organocatalyst for the halogenation of a variety of functionalized pyrazoles, indazoles, and aromatics. This work provides an example of a mild organocatalyst that does not require light, oxidizing agents, transition-metal activation, or high temperatures. Thirty-nine halogenated pyrazoles and indazoles, including pharmaceuticals such as celecoxib, deracoxib, and antipyrine, have been isolated in good to excellent yields using -halosuccinimides as the stoichiometric halogen source with gallocyanine as the catalyst.

View Article and Find Full Text PDF

Highly contagious respiratory infection diseases such as COVID-19 can be transmitted by inhaling virus laden liquid droplets and short-range aerosols, released by an infected person. Particularly, in hospitals, spraying of the respiratory droplets containing pathogens from the conjunctiva or mucus of a susceptible person plays a key role in transferring the infectious diseases. N95 filtering respirators are a critical personal protective equipment.

View Article and Find Full Text PDF

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF

Droplet electricity generators (DEGs) that generate electricity through the interplay between water and the dielectric materials have attracted growing research interest due to their remarkable output voltage. However, conventional DEG design faces a critical trade-off: regulating the properties of dielectric materials, such as thickness or permittivity, can enhance output voltage yet weaken transferred charge. Here, a fluorinated ethylene propylene (FEP)/multi-walled carbon nanotubes (MWCNTs)/polydimethylsiloxane (PDMS) composite-based droplet electricity generator (FMP-DEG) is presented to overcome the voltage-charge trade-off and thus achieve an enhanced energy conversion efficiency of 4.

View Article and Find Full Text PDF

Owing to its chemical stability and molecular-level structural tunability, the molecular electrocatalyst cobalt phthalocyanine (CoPc) demonstrates significant potential for the electrochemical reduction of CO (CORR). However, the specific catalytic reaction process of CORR and the dynamic structural evolution mechanisms of CoPc remain a contentious subject. Elucidating the reaction pathways of CO electroreduction to CO and tracking structural evolution pose substantial challenges.

View Article and Find Full Text PDF