Solution-based II-VI core/shell nanowire heterostructures.

J Am Chem Soc

Department of Chemistry and Biochemistry and Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA.

Published: November 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate the solution-phase synthesis of CdS/CdSe, CdSe/CdS, and CdSe/ZnTe core/shell nanowires (NWs). On the basis of bulk band offsets, type-I and type-II heterostructures are made, contributing to the further development of low-dimensional heteroassemblies using solution-phase chemistry. Core/shell wires are prepared by slowly introducing shell precursors into a solution of premade core NWs dispersed in a noncoordinating solvent at moderate temperatures (215-250 degrees C). Resulting heterostructures are characterized through low- and high-resolution transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. From these experiments, initial shell growth appears to occur through either Stranski-Krastanov or Volmer-Weber island growth. However, beyond a critical shell thickness, nucleation of randomly oriented nanocrystals results in a polycrystalline coat. In cases where overcoating has been achieved, corresponding elemental analyses show spatially varying compositions along the NW radial direction in agreement with expected element ratios. Electronic interactions between the core and shell were subsequently probed through optical studies involving UV-vis extinction spectroscopy, photoluminescence experiments, and transient differential absorption spectroscopy. In particular, transient differential absorption studies reveal unexpected shell-induced changes in core NW Auger kinetics at high carrier densities. Previously seen three-carrier Auger kinetics in CdS (bimolecular in CdSe) NWs were suppressed by the presence of a CdSe (CdS) shell. These observations suggest the ability to influence NW optical/electrical properties by coating them with a surrounding shell, a method which could be important for future NW optical studies as well as for NW-based applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja805538pDOI Listing

Publication Analysis

Top Keywords

optical studies
8
transient differential
8
differential absorption
8
auger kinetics
8
shell
6
solution-based ii-vi
4
ii-vi core/shell
4
core/shell nanowire
4
nanowire heterostructures
4
heterostructures demonstrate
4

Similar Publications

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFUs) are a major clinical challenge, particularly among patients with refractory ulcers, that often lead to severe complications such as infection, amputation, and high mortality. Innovations supported by strong clinical evidence have the potential to improve healing outcomes, enhance quality of life, and reduce the economic burden on individuals and health care systems.

Objective: To describe the design of the concurrent optical and magnetic stimulation (COMS) therapy Investigational Device Exemption (IDE) study for refractory DFUs (MAVERICKS) trial.

View Article and Find Full Text PDF

Background: Identifying suspected anterior circulation large-vessel occlusion (aLVO) strokes during emergency calls could enhance dispatch efficiency, particularly in rural areas. However, data on emergency medical dispatchers' (EMDs) ability to recognize aLVO symptoms remain limited. This simulation study aimed to evaluate the feasibility of identifying side-specific arm paresis, side-specific conjugate eye deviation (CED), and aphasia during emergency calls by instructing layperson callers to perform brief, standardized examination steps.

View Article and Find Full Text PDF

Lucilia sericata (Meigen, 1826) maggot excretions/secretions (ES) have demonstrated anti-inflammatory and wound healing potential on corneal epithelial cells. This study aimed to evaluate the in vitro antibacterial potential of the ES against clinically relevant Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus epidermidis in the presence of human tear fluid. The ES was collected from sterile first- and second-instar L.

View Article and Find Full Text PDF

Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.

Light Sci Appl

September 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.

Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.

View Article and Find Full Text PDF