Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SATB1 (special AT-rich sequence-binding protein-1) provides a key link between DNA loop organization, chromatin modification/remodeling, and association of transcription factors at matrix attachment regions (MARs). To investigate the role of SATB1 in cellular events, we performed a yeast two-hybrid screen that identified SUMO-1, Ubc9, and protein inhibitor of activated STAT (PIAS) family members as SATB1 interaction partners. These proteins, working in concert, enhanced SUMO conjugation to lysine-744 of SATB1. Overexpression of SUMO or PIAS in Jurkat cells, which express high levels of endogenous SATB1, exhibited enhanced caspase cleavage of this MAR-associating protein. Sumoylation-deficient SATB1 (SATB1(K744R)) failed to display the characteristic caspase cleavage pattern; however, fusion of SUMO in-frame to SATB1(K744R) restored cleavage. A SUMO-independent interaction of inactive caspase-6 and SATB1 was noted. A subset of total cellular SATB1 localized into promyelocytic leukemia nuclear bodies where enhanced SATB1 cleavage was detected subsequent to caspase activation. These results reveal a novel sumoylation-directed caspase cleavage of this key regulatory molecule. The role of regulated proteolysis of SATB1 may be to control transcription in immune cells during normal cell functions or to assist in efficient and rapid clearance of nonfunctional or potentially damaging immune cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440605PMC
http://dx.doi.org/10.1074/jbc.M800512200DOI Listing

Publication Analysis

Top Keywords

caspase cleavage
16
satb1
12
sumo conjugation
8
matrix attachment
8
special at-rich
8
at-rich sequence-binding
8
sequence-binding protein-1
8
nuclear bodies
8
immune cells
8
cleavage
6

Similar Publications

Peptide-Programmable DNAzyme Converter for Artificial Autocatalytic Gene Regulation.

J Am Chem Soc

September 2025

College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.

The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.

View Article and Find Full Text PDF

The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor.

View Article and Find Full Text PDF

[Avitinib suppresses NLRP3 inflammasome activation and ameliorates septic shock in mice].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China.

Objectives: To investigate the effect of avitinib for suppressing NLRP3 inflammasome activation and alleviating septic shock and explore the underlying mechanism.

Methods: Mouse bone marrow-derived macrophages (BMDM), human monocytic leukemia cell line THP-1, and peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers were pre-treated with avitinib, followed by activation of the canonical NLRP3 inflammasome using agonists including nigericin, monosodium urate (MSU) crystals, or adenosine triphosphate (ATP). Non-canonical NLRP3 inflammasome activation was induced intracellular transfection of lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Imperatorin alleviates intestinal fibrosis by suppressing AIM2-mediated GSDMD pyroptosis in macrophages.

Cell Mol Gastroenterol Hepatol

September 2025

Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China. Electronic address:

Background & Aims: Over-activation of pyroptosis, recently reidentified as Gasdermin D (GSDMD)-mediated proinflammatory cell death, results in severe inflammation-related disorders. Intestinal fibrosis, an inflammation-related disorder, remains one of the most common and intractable complications of Crohn's disease (CD). However, it is unknown whether excessive pyroptosis contributes to the development of intestinal fibrosis in CD.

View Article and Find Full Text PDF

The Fritillaria alkaloid peiminine acts as a chemosensitizer to potentiate oxaliplatin efficacy against gastric cancer.

Pathol Res Pract

September 2025

Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medica

Background: Fritillaria walujewii Regel (Xinjiang Bei-Mu), an authentic ("Dao-di") medicinal herb documented in Chinese pharmacopoeias, is traditionally used to treat respiratory disorders. Its principal steroidal alkaloid, peiminine (PMI), demonstrates significant anticancer activity. Oxaliplatin (Oxa), a first-line chemotherapeutic cornerstone for gastric cancer (GC), is limited clinically by intrinsic chemoresistance.

View Article and Find Full Text PDF