Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ATP in bile is a potent secretogogue, stimulating cholangiocyte Cl- and fluid secretion via binding to membrane P2 receptors, though the physiological stimuli involved in biliary ATP release are unknown. The goal of the present studies was to determine the potential role of fluid flow in biliary ATP release and secretion. In both human Mz-Cha-1 biliary cells and normal rat cholangiocyte monolayers, exposure to flow increased relative ATP release which was proportional to the shear stress. In parallel studies, shear was associated with an increase in [Ca2+]i and membrane Cl- permeability, which were both dependent on extracellular ATP and P2 receptor stimulation. Flow-stimulated ATP release was dependent on [Ca2+]i, exhibited desensitization with repetitive stimulation, and was regulated by PKCzeta. In conclusion, both human and rat biliary cells exhibit flow-stimulated, PKCzeta-dependent, ATP release, increases in [Ca2+]i and Cl- secretion. The finding that fluid flow can regulate membrane transport suggests that mechanosensitive ATP release may be a key regulator of biliary secretion and an important target to modulate bile flow in the treatment of cholestatic liver diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536582PMC
http://dx.doi.org/10.1113/jphysiol.2008.153015DOI Listing

Publication Analysis

Top Keywords

atp release
28
fluid flow
12
atp
9
mechanosensitive atp
8
biliary atp
8
biliary cells
8
release
7
biliary
6
fluid
4
flow induces
4

Similar Publications

Glioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Temozolomide (TMZ), a standard-of-care chemotherapeutic agent, exerts its cytotoxicity by alkylating DNA, which triggers a DNA damage response and depletes ATP and NAD. However, TMZ also releases the byproduct 4-amino-5-imidazole carboxamide (AIC), which is believed to be a benign metabolite.

View Article and Find Full Text PDF

Metagenomic analysis reveals genetic coupling between TonB-dependent transporters and extracellular enzymes in coastal bacterial communities.

Mar Life Sci Technol

August 2025

State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.

Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.

View Article and Find Full Text PDF

Regeneration of infected bone defects (IBDs) requires biomaterials capable of dynamically coordinating antimicrobial, anti-inflammatory, and osteogenic functions. Overcoming the spatiotemporal mismatches in treating IBDs remains a critical challenge. Here, we designed a temporally controlled therapy based on gelatin methacrylate (GelMA)-based nanocomposite hydrogels (GCS) coembedded with sulfur quantum dots (SQDs) nanoenzymes and calcium-phosphorus oligomers (CPOs.

View Article and Find Full Text PDF

High fat diet (HFD)-induced obesity increases the risk and severity of psoriasis. However, the immunoregulatory effects of different HFDs on psoriasis pathogenesis remains poorly understood. Here, mimicking human dietary fat profiles, four HFDs-saturated, monounsaturated, omega-6, and omega-3 fats-were designed and used to induce obesity in mice.

View Article and Find Full Text PDF

Nanomedicine targeting the Warburg effect: Advanced strategies for cancer therapy.

Crit Rev Oncol Hematol

September 2025

School of Life Sciences, Henan University, Kaifeng, Henan 475000, China. Electronic address:

Cancer remains the foremost cause of mortality globally, characterized by un-controlled cellular proliferation driven by oncogenic mutations and other factors. These mutations disrupt cellular homeostasis, leading to a spectrum of adverse physiological responses. A key feature of cellular metabolism in cancer is the Warburg effect, in which cancer cells preferentially rely on glycolysis for ATP production, even in the presence of oxygen, to meet their elevated metabolic demands.

View Article and Find Full Text PDF