Prediction of specific protein-DNA recognition by knowledge-based two-body and three-body interaction potentials.

Annu Int Conf IEEE Eng Med Biol Soc

Bioinformatics Program, Department of Bioengineering, University of Ilinois at Chicago, Chicago, IL 60607 USA.

Published: April 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gene regulation requires specific protein-DNA interactions. Detecting the short and variable DNA sequences in gene promoter regions to which transcription factors (TF) bind is a difficult challenge in bioinformatics. Here we have developed two-body and three-body interaction potentials that are able to assess protein-DNA interaction and achieve a higher level of specificity in the recognition of TF-binding sites. The potentials were calculated using experimentally characterized 3-D structures of protein-DNA complexes. We implemented two approaches in order to evaluate the potentials. Using the first method, we calculated the Z-score of the potential energy of a true TF-binding sequence when compared to 50,000 randomly generated DNA sequences. The second method allowed us to take advantage of the ability of statistical potentials to recognize novel TF-binding sites within the promoter region of genes. We found that the three-body potential, which takes into account the interaction between a DNA base and a protein residue with regard to the effect of a neighboring DNA base, had a better average Z-score than that of the two-body potential. This neighbor effect suggests that the local conformation of DNA does play a critical role in specific residue-base recognition. In all cases, the potentials developed here outperformed published results. The two sets of potentials were tested further by applying them in genome-scale TF-binding site prediction for the CRP protein in E. coli. Out of the 142 cases, 28% of the true binding sites ranked first (i.e.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2007.4353467DOI Listing

Publication Analysis

Top Keywords

specific protein-dna
8
two-body three-body
8
three-body interaction
8
interaction potentials
8
dna sequences
8
tf-binding sites
8
dna base
8
potentials
7
dna
5
prediction specific
4

Similar Publications

The p53 transcription factor family consists of the three members p53, p63, and p73. Both p63 and p73 exist in different isoforms that are well characterized. Isoforms have also been identified for p53 and it has been proposed that they are responsible for increased cancer metastasis.

View Article and Find Full Text PDF

On-DNA Binder Confirmation: Increasing Confidence in DEL Hits.

J Med Chem

September 2025

Encoded Technologies, Molecular Modalities Discovery, GSK, Cambridge, Massachusetts 02140, United States.

DNA-encoded libraries (DELs) are used throughout small-molecule drug discovery to identify new lead compounds for protein targets. DEL hits are traditionally evaluated via off-DNA resynthesis and subsequent biological testing. This approach can be time- and resource-intensive, limiting the number of putative hits selected for follow-up.

View Article and Find Full Text PDF

Peptide-Programmable DNAzyme Converter for Artificial Autocatalytic Gene Regulation.

J Am Chem Soc

September 2025

College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.

The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.

View Article and Find Full Text PDF

This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.

View Article and Find Full Text PDF

The role of absent in melanoma 2 (AIM2) in cardiovascular diseases.

Inflamm Res

September 2025

Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.

Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.

View Article and Find Full Text PDF