Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We previously showed that lysozyme (Lzm-S), derived from leukocytes, caused myocardial depression in canine sepsis by binding to the endocardial endothelium to release nitric oxide (NO). NO then diffuses to adjacent myocytes to activate the cGMP pathway. In a canine right ventricular trabecular (RVT) preparation, Lzm-S also decreased the inotropic response to field stimulation (FSR) during which the sympathetic and parasympathetic nerves were simulated to measure the adrenergic response. In the present study, we determined whether the pathway by which Lzm-S decreased FSR was different from the pathway by which Lzm-S reduced steady-state (SS) contraction. Furthermore, we determined whether the decrease in FSR was due to a decrease in sympathetic stimulation or enhanced parasympathetic signaling. In the RVT preparation, we found that the inhibitory effect of Lzm-S on FSR was prevented by NO synthase (NOS) inhibitors. A cGMP inhibitor also blocked the depressant activity of Lzm-S. However, in contrast to the Lzm-S-induced decline in SS contraction, chemical removal of the endocardial endothelium by Triton X-100 to eliminate endothelial NO release did not prevent the decrease in FSR. An inhibitory G protein was involved in the effect of Lzm-S, since FSR could be restored by treatment with pertussis toxin. Atropine prevented the Lzm-S-induced decline in FSR, whereas beta(1)- and beta(2)-adrenoceptor function was not impaired by Lzm-S. These results indicate that the Lzm-S-induced decrease in FSR results from a nonendothelial release of NO. NO then acts through inhibitory G protein to enhance parasympathetic signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00502.2007DOI Listing

Publication Analysis

Top Keywords

inhibitory protein
12
decrease fsr
12
adrenergic response
8
nonendothelial release
8
lzm-s
8
endocardial endothelium
8
rvt preparation
8
lzm-s decreased
8
fsr
8
pathway lzm-s
8

Similar Publications

Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.

View Article and Find Full Text PDF

Design, synthesis and antitumor activity of pentacyclic triterpenoid Asiatic acid derivatives as Sp1 inhibitors.

Bioorg Med Chem Lett

September 2025

Department of Chemical Engineering, Analysis and Test Center, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:

Asiatic acid (AA) was used as the lead compound and 22 inhibitors of specificity protein 1 (Sp1) were designed and synthesized with modification at A ring and C-28 position of AA, whose structures were confirmed by HRMS, H NMR and C NMR. The growth inhibitory effects of Asiatic acid derivatives on human breast cancer cells (MCF-7) and cervical cancer cells (Hela) were determined by tetramethyl azole salt (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) colorimetric assay. The results showed that all of these compounds inhibited the proliferation of HeLa and MCF-7 cells, and all the derivatives showed stronger tumor cytotoxicity than AA, among which compounds I, II, and III were comparable to the positive control drug cisplatin.

View Article and Find Full Text PDF

Objective: Therapeutic potential of selective aggrecanase inhibition in osteoarthritis (OA) was previously demonstrated using a variant of endogenous tissue inhibitor of metalloproteinase-3 (TIMP-3); however, this relied on transgenic mice overexpressing TIMP-3. Here, we develop a translational approach for harnessing the aggrecanase-selective inhibitory activity of TIMP-3 using the latency associated peptide (LAP) technology.

Methods: We successfully produced and purified recombinant LAP-TIMP-3 fusion proteins and determined the pharmacokinetics of these proteins in vivo following systemic injection.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Lonicera caerulea var. edulis is an Oroqen medicine with fever relief, detoxification, and anti-inflammatory activities. However, pharmacological and chemical research on its leaves is limited.

View Article and Find Full Text PDF

A potent NLRP3 inhibitor effective against both MCC950-sensitive and -resistant inflammation.

Cell Chem Biol

September 2025

Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, South Korea. Electronic address:

The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome detects a broad spectrum of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), initiating inflammatory responses through caspase-1 activation and interleukin (IL)-1β/IL-18 release. Dysregulated NLRP3 activation is implicated in a range of diseases, including infectious diseases, autoinflammatory disorders, metabolic disorders, and cancer, making it an attractive therapeutic target. Here, we identify ZAP-180013 as a potent and selective small-molecule inhibitor of NLRP3 through high-throughput chemical screening.

View Article and Find Full Text PDF