Publications by authors named "Zhao-Qin Cheng"

Background: The development of lactic acidemia (LA) in septic shock (SS) is associated with an ominous prognosis. We previously showed that the mechanism of LA in SS may relate to impaired hepatic uptake of lactate, but the mechanism was not clear. Uptake of lactate by the liver occurs by a membrane-associated, pH-dependent, antiport system known as the monocarboxylate transporter.

View Article and Find Full Text PDF

In septic shock (SS), dysfunction of many organ systems develops during the course of the illness, although the mechanisms are not clear. In earlier studies, we reported that lysozyme-c (Lzm-S), a protein that is released from leukocytes and macrophages, was a mediator of the myocardial depression and vasodilation that develop in a canine model of Pseudomonas aeruginosa SS. Whereas both of these effects of Lzm-S are dependent on its ability to intrinsically generate hydrogen peroxide, we subsequently showed that Lzm-S can also deposit within the vascular smooth muscle layer of the systemic arteries in this model.

View Article and Find Full Text PDF

In septic shock (SS), cardiovascular collapse is caused by the release of inflammatory mediators. We previously found that lysozyme-c (Lzm-S), released from leukocytes, contributed to systemic vasodilation in a canine model of SS. We then delineated the pathway by which this occurs in a canine carotid artery organ bath preparation (CAP).

View Article and Find Full Text PDF

Interventions: Vasopressor therapy is required in septic shock to maintain tissue perfusion in the face of hypotension. Unfortunately, there are significant side effects of current vasopressors, and newer agents need to be developed. We recently discovered that ethyl gallate, a nonflavonoid phenolic antioxidant found in food substances, could reverse low mean arterial pressure found in an experimental model of septic shock due to inhibition of hydrogen peroxide signaling.

View Article and Find Full Text PDF

Although hydrogen peroxide (H2O2) is a well-described reactive oxygen species that is known for its cytotoxic effects and associated tissue injury, H2O2 has recently been established as an important signaling molecule. We previously demonstrated that lysozyme (Lzm-S), a mediator of sepsis that is released from leukocytes, could produce vasodilation in a phenylephrine-constricted carotid artery preparation by H2O2 signaling. We found that Lzm-S could intrinsically generate H2O2 and that this generation activated H2O2-dependent pathways.

View Article and Find Full Text PDF

In septic shock, cardiovascular collapse is caused by the release of inflammatory mediators. We previously found that lysozyme (Lzm-S), released from leukocytes, contributed to the myocardial depression and arterial vasodilation that develop in canine models of septic shock. To cause vasodilation, Lzm-S generates hydrogen peroxide (H(2)O(2)) that activates the smooth muscle soluble guanylate cyclase (sGC) pathway, although the mechanism of H(2)O(2) generation is not known.

View Article and Find Full Text PDF

In septic shock, systemic vasodilation and myocardial depression contribute to the systemic hypotension observed. Both components can be attributed to the effects of mediators that are released as part of the inflammatory response. We previously found that lysozyme (Lzm-S), released from leukocytes, contributed to the myocardial depression that develops in a canine model of septic shock.

View Article and Find Full Text PDF

Cardiovascular dysfunction in septic shock (SS) is ascribed to the release of inflammatory mediators. Norepinephrine (NE) is often administered to treat low MAP in SS. We recently found that lysozyme c (Lzm-S) released from leukocytes was a mediator of myocardial depression in an Escherichia coil model of SS in dogs.

View Article and Find Full Text PDF

We previously showed that lysozyme (Lzm-S), derived from leukocytes, caused myocardial depression in canine sepsis by binding to the endocardial endothelium to release nitric oxide (NO). NO then diffuses to adjacent myocytes to activate the cGMP pathway. In a canine right ventricular trabecular (RVT) preparation, Lzm-S also decreased the inotropic response to field stimulation (FSR) during which the sympathetic and parasympathetic nerves were simulated to measure the adrenergic response.

View Article and Find Full Text PDF

Inflammatory mediators have been implicated as a cause of reversible myocardial depression in septic shock. We previously reported that the release of lysozyme-c (Lmz-S) from leukocytes from the spleen or other organs contributes to myocardial dysfunction in Escherichia coli septic shock in dogs by binding to a cardiac membrane glycoprotein. However, the mechanism by which Lzm-S causes this depression has not been elucidated.

View Article and Find Full Text PDF

Purpose: In sepsis, reversible myocardial depression has been ascribed to the release of mediators of inflammation. We previously found that lysozyme released from leukocytes from the spleen and other organs mediated myocardial depression in an Escherichia coli model of septic shock in dogs. We hypothesize that lysozyme binds to or cleaves a cardiac surface membrane N-glycoprotein to cause depression.

View Article and Find Full Text PDF

Objective: Reversible myocardial depression in sepsis has been ascribed to the release of inflammatory mediators. We recently found that lysozyme c (Lzm-S), consistent with that originating from the spleen, was a mediator of myocardial depression in an Escherichia coli model of septic shock in dogs. We further showed in a right ventricular trabecular (RVT) preparation that Lzm-S's depressant activity could be blocked by N,N',N" triacetylglucosamine (TAC), a competitive inhibitor of Lzm-S.

View Article and Find Full Text PDF

The objective of the present study was to identify the nature of a filterable cardiodepressant substance (FCS) that contributes to myocardial dysfunction in a canine model of Escherichia coli septic shock. In a previous study, it was found that FCS increased in plasma after 4 h of bacteremia (Am J Physiol 1993;264:H1402) in which FCS was identified by a bioassay that included a right ventricular trabecular (RVT) preparation. In that study, FCS was only partially identified by pore filtration techniques and was found to be a protein of molecular weight between 10 and 30 K.

View Article and Find Full Text PDF