Inactivation of cysteine and serine proteases by singlet oxygen.

Arch Biochem Biophys

Department of Biomolecular Function, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City, Yamagata 990-9585, Japan.

Published: May 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reaction of singlet oxygen with individual proteins is less well understood than that with other biological molecules. The inhibition of caspase 3 by singlet oxygen appears to involve the modification of a catalytic cysteine residue, since the reactivity of the sulfhydryl with alkylating agents decreased after singlet oxygen treatment. In addition to three cysteine proteases, two serine proteases were also found to be inhibited by singlet oxygen with a similar dose dependency, while an aspartate protease and a metalloprotease were not affected. The carbonyl content of these enzymes was elevated as the result of treatment with singlet oxygen. The catalytic center in serine proteases and cysteine proteases, in which catalytic reactions are based on similar mechanisms involving nucleophilic catalysis assisted by histidine as a general acid/base, can be expected to be modified by singlet oxygen and undergo inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2007.03.020DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
28
serine proteases
12
cysteine proteases
8
singlet
7
oxygen
7
proteases
5
inactivation cysteine
4
cysteine serine
4
proteases singlet
4
oxygen reaction
4

Similar Publications

Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is emerging as a significant contributor to environmental DOM pools. However, the molecular-scale processes governing its interactions with mineral and their effects on photoreactivity remain poorly understood. This study elucidates the structure-dependent molecular transformations and photochemical reactivity of DOM during its interaction with goethite, revealing distinct mechanisms driving reactive oxygen species (ROS) dynamics.

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.

View Article and Find Full Text PDF

Strategic Design of Aptamer-Guided Aggregation-Induced Emission Nanoparticles for Targeted Photodynamic Therapy in Breast Cancer.

Adv Sci (Weinh)

September 2025

Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,

Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.

View Article and Find Full Text PDF

Effect of Oxygen Exposure on the Triplet Excitation Dynamics of the Monomeric LHCII Complex from Spinach.

J Phys Chem B

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.

View Article and Find Full Text PDF