98%
921
2 minutes
20
Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b517914a | DOI Listing |
J Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges.
View Article and Find Full Text PDF