98%
921
2 minutes
20
DNA was immobilized on glassy carbon electrodes to fabricate DNA-modified electrodes. The direct electron transfer of horse heart cytochrome c on DNA-modified glassy carbon electrode was achieved. A pair of well-defined redox peaks of cytochrome c appeared at Epc = -0.017 V and Epa = 0.009 V (vs. Ag/AgCl) in 10 mM phosphate buffer solution (pH 7.0) at a scan rate of 50 mV/s. The electron transfer coefficient (alpha) and the standard rate constant of the surface reaction (Ks) of cytochrome c on DNA-modified electrodes could be estimated to be 0.87 and 34.52 s(-1), respectively. The DNA-modified glassy carbon electrode could be applied to detect cytochrome c by means of differential pulse voltammetry (DPV). The cathodic peak current was proportional to the quantity of cytochrome c in the range of 4.0 x 10(-6) M to 1.2 x 10(-5) M. The correlation coefficient is 0.996, and with the detection limit was 1.0 x 10(-6) M (three times the ratio of signal to noise, S/N = 3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.22.1071 | DOI Listing |
Mikrochim Acta
September 2025
Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye.
A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.
View Article and Find Full Text PDFAnal Chem
September 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
Electrogenerated chemiluminescence (ECL) methods have been widely used in clinical diagnosis. Although ECL peptide-based biosensors continue to grow with good sensitivity and signal flexibility, little emphasis has been placed on the effect of the peptide sequence on ECL sensitivity. We herein studied the nuanced effects of different peptide sequences on the analytical performance of ECL peptide-based biosensors for matrix metalloproteinase 2 (MMP-2) assay, in which [(pbz)Ir(DMSO)Cl] (pbz = 3-(2-pyridyl)benzoic acid) was used as the ECL emitter while a specific peptide was used as the molecular recognition element.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemistry and Environmental Sciences, The BioSMART Center, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States.
Herein, we demonstrate the growth pattern and mechanism of copper nanocubes (CuNCs) on the surface of biodegradable polyamic acid (PAA) film as a function of applied potential. The PAA solution was fabricated via a poly condensation reaction between 4,4'-oxidianiline (ODA) and pyromellitic dianhydride (PMDA) in dimethylacetamide (DMAC) at 25 °C. The resulting viscous PAA solution was drop-cast on a glassy carbon electrode (PAA|GCE) and dried at room temperature.
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
An advanced electrochemical immunosensor platform was designed for the precise quantification of cortisol. The sensor design integrates graphene oxide-silicon carbide (GO-SiC) nanocomposites onto a glassy carbon electrode (GCE). Denatured bovine serum albumin (d-BSA) and an anti-cortisol antibody were immobilized on the GO-SiC/GCE surface as part of the immunosensor's design.
View Article and Find Full Text PDFTalanta
August 2025
Department of Chemistry, Faculty of Natural and Exact Sciences, Universidad de Oriente, Av. Patricio Lumumba, Santiago de Cuba, 90100, Cuba.
Molecularly imprinted polymers (MIPs) have been studied to be used as a platform for electrochemical sensing devices, with special regard to the determination of pesticides. Due to MIP applicability, in the present research, we develop a glassy carbon electrode (GCE) modified with a molecularly imprinted nanocomposite based on the doping of poly(3,4-ethylenedioxythiophene) (PEDOT) with chitosan (Chit) and TiO nanoparticles for sensing atrazine in environmental samples. The construction of the MIP nanocomposite was divided into four parts, which include the chitosan-TiO layer formation by simple drop-casting on the GCE, the doping and electropolymerization of the Chit+TiO+PEDOT layer, cavity formation, and elution.
View Article and Find Full Text PDF