Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.

Tree Physiol

School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.

Published: December 2005


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, mortality and decomposition. To better understand the effects of elevated [CO2] and [O3] on the dynamics of fine root C, we conducted a combined field and laboratory incubation experiment to monitor decomposition dynamics and changes in fine root litter chemistry. Free-air CO2 enrichment (FACE) technology at the FACTS-II Aspen FACE project in Rhinelander, Wisconsin, elevated [CO2] (535 microl 1-1) and [O3] (53 nl 1-1) in intact stands of pure trembling aspen (Populus tremuloides Michx.) and in mixed stands of trembling aspen plus paper birch (Betula papyrifera Marsh.) and trembling aspen plus sugar maple (Acer saccharum Marsh.). We hypothesized that the trees would react to increased C availability (elevated [CO2]) by increasing allocation to C-based secondary compounds (CBSCs), thereby decreasing rates of decomposition. Because of its lower growth potential, we reasoned this effect would be greatest in the aspen-maple community relative to the aspen and aspen-birch communities. As a result of decreased C availability, we expected elevated [O3] to counteract shifts in C allocation induced by elevated [CO2]. Concentrations of CBSCs were rarely significantly affected by the CO2 and O3 treatments in decomposing fine roots. Rates of microbial respiration and mass loss from fine roots were unaffected by the treatments, although the production of dissolved organic C differed among communities. We conclude that elevated [CO2] and [O3] induce only small changes in fine root chemistry that are insufficient to significantly influence fine root decomposition. If changes in soil C cycling occur in the future, they will most likely be brought about by changes in litter production.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/25.12.1501DOI Listing

Publication Analysis

Top Keywords

fine root
20
elevated [co2]
20
fine roots
12
trembling aspen
12
effects elevated
8
fine
8
rising atmospheric
8
carbon cycling
8
litter chemistry
8
[co2] [o3]
8

Similar Publications

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF

Snow is an important insulator of Arctic soils during winter and may be a source of soil moisture in summer. Changes in snow depth are likely to affect fine root growth and mortality via changes in soil temperature, moisture, and/or nutrient availability, which could alter aboveground growth and reproduction of Arctic vegetation. We explored fine root dynamics at three contrasting treelines in northwest Alaska.

View Article and Find Full Text PDF

The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by C ages. Reported C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth.

View Article and Find Full Text PDF

Estimating braking and propulsion forces during overground running in and out of the lab.

PLoS One

September 2025

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, United States of America.

Accurately estimating kinetic metrics, such as braking and propulsion forces, in real-world running environments enhances our understanding of performance, fatigue, and injury. Wearable inertial measurement units (IMUs) offer a potential solution to estimate kinetic metrics outside the lab when combined with machine learning. However, current IMU-based kinetic estimation models are trained and evaluated within a single environment, often on lab treadmills.

View Article and Find Full Text PDF

Robot-assisted Minimally Invasive Management of a Calcified Mandibular Lateral Incisor: A Case Report.

Int Dent J

September 2025

Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China. Electronic address:

Introduction And Aims: Calcified root canals in mandibular anterior teeth present significant therapeutic challenges due to their narrow anatomy and minimal tolerance for procedural errors. This case report demonstrates the successful integration of robot-assisted navigation with an ultra-fine bur to address these challenges.

Methods: A 44-year-old male presented with symptomatic chronic apical periodontitis and pulp calcification in a mandibular lateral incisor, 20 years after orthodontic treatment.

View Article and Find Full Text PDF