98%
921
2 minutes
20
This paper presents a large amount of data on the composition of quince fruit with regard to phenolic compounds, organic acids, and free amino acids. Subsequently, principal component analysis (PCA) is carried out to characterize this fruit. The main purposes of this study were (i) the clarification of the interactions among three factors-quince fruit part, geographical origin of the fruits, and harvesting year-and the phenolic, organic acid, and free amino acid profiles; (ii) the classification of the possible differences; and (iii) the possible correlation among the contents of phenolics, organic acids, and free amino acids in quince fruit. With these aims, quince pulp and peel from nine geographical origins of Portugal, harvested in three consecutive years, for a total of 48 samples, were studied. PCA was performed to assess the relationship among the different components of quince fruit phenolics, organic acids, and free amino acids. Phenolics determination was the most interesting. The difference between pulp and peel phenolic profiles was more apparent during PCA. Two PCs accounted for 81.29% of the total variability, PC1 (74.14%) and PC2 (7.15%). PC1 described the difference between the contents of caffeoylquinic acids (3-O-, 4-O-, and 5-O-caffeoylquinic acids and 3,5-O-dicaffeoylquinic acid) and flavonoids (quercetin 3-galactoside, rutin, kaempferol glycoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, quercetin glycosides acylated with p-coumaric acid, and kaempferol glycosides acylated with p-coumaric acid). PC2 related the content of 4-O-caffeoylquinic acid with the contents of 5-O-caffeoylquinic and 3,5-O-dicaffeoylquinic acids. PCA of phenolic compounds enables a clear distinction between the two parts of the fruit. The data presented herein may serve as a database for the detection of adulteration in quince derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf040321k | DOI Listing |
Eur J Nucl Med Mol Imaging
September 2025
Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute o
Elevated expense of chemical media spurs a shift to non-chemical media in microalgal cultivation, while ensuring the safety of the resulting powder poses a challenge. No previous studies have evaluated the safety and application of Spirulina subsalsa powder cultivated in monosodium glutamate wastewater (MSGW) and seawater. In this study, an analysis of basic nutritional components in Spirulina subsalsa powder indicated that this algal powder had high protein content, low lipid content and rich mineral content.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.
Genetic code expansion (GCE) technology has primarily been devoted to the introduction of noncanonical amino acids (ncAAs) into ribosomally synthesized proteins or peptides. Its potential for modifying nonribosomal natural products remains unexplored. In this study, we introduce a novel strategy that integrates GCE with the directed evolution of cyclodipeptide synthase (CDPS) to engineer a new class of CDPSs capable of biosynthesizing cyclodipeptides containing ncAAs.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan.
Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.
View Article and Find Full Text PDF