98%
921
2 minutes
20
We demonstrate that the apparent length of a thin white arc on a black disk, rotating concentrically at 2.5 rps, varies with angular length and exposure duration. While short arcs (9-18 degrees ) gradually expand, long arcs (36-72 degrees ) first undergo a brief contraction, before they also expand. On average, perceived elongation asymptotes after 15 s equivalent to visual persistencies ranging from 68 to 170 ms. Using bi- and tri-colored arcs, we find that the apparent increase in length derives from the rear end of the rotating stimulus, while the initial shrinkage derives from contraction of the middle. After 15 s of adaptation, perceived length of the arc decays to actual stimulus length within an average of 6 s and, upon re-exposure of the arc, reaches its former value after only 5 s (priming). When the rotating arc is presented first to one eye and then to the other, apparent elongation transfers partially (46%), suggesting a contribution by the binocular cells in the visual cortex. A partial transfer (26%) also occurs from clockwise to counterclockwise rotation. When tested interocularly, the directional transfer is more pronounced (47%) and equals the interocular transfer under equidirectional conditions, suggesting that the directional transfer (cw versus ccw) might derive from non-directional cortical units. Whereas the initial contraction may be attributable to backward masking, the observed elongation likely reflects a cumulative build-up of after-discharge in cortical neurons over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0042-6989(02)00201-8 | DOI Listing |
J Colloid Interface Sci
September 2025
School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China. Electronic address:
Nanozymes are nanomaterials designed to mimic the catalytic functions of natural enzymes, offering advantages such as enhanced stability, tunability, and scalability. Although precise control over the spatial arrangement of catalytic centers is essential for maximizing nanozyme activity, it remains a fundamental challenge in nanozyme design. Here, we present a supramolecular strategy to achieve molecular-level engineering of catalytic centers by grafting hemin onto monodisperse cellulose oligomers (MCOs).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:
We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.
View Article and Find Full Text PDFWater Res
September 2025
Key Lab of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Co
As an abundant natural mineral, pyrite presents a highly promising solution for sustainable groundwater remediation, owing to its distinct electron transfer properties. However, research on pyrite's remediation capabilities has often focused on isolated mechanisms, neglecting the complex interplay between the mineral's properties, the environmental matrix, and interfacial processes, thereby limiting comprehensive understanding of its efficacy and constraints. Herein, an integrated "mechanism-application-sustainability" framework is proposed to bridge this knowledge gap.
View Article and Find Full Text PDFGait Posture
September 2025
School of Business, Social and Decision Sciences, Constructor University Bremen, Constructor University, Campus Ring 1, Bremen 28759, Germany.
Background: Age-related declines in dynamic balance and cognitive control increase fall risk in older adults (OA). Non-invasive brain stimulation, such as anodal transcranial direct current stimulation (a-tDCS), may enhance training outcomes. However, it remains unclear whether stimulation over motor or prefrontal regions is more effective for improving dynamic balance training (DBT) in OA.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
Catalysts for heterogeneous advanced oxidation processes (AOPs) in water remediation face environmental sustainability challenges, due to the intensive production of catalysts and limited stability of catalysts while maintaining high efficiency. Herein, we design a biomimetic carbon catalyst (BCC) inspired by the diatom frustule valve structure, achieving high environmental sustainability while maintaining superior water decontamination performance by a non-radical direct electron transfer (DET) pathway through activating peracetic acid (PAA). Utilizing a hydrogen-bonding strategy, BCC features pillared layered hierarchical pores with an ultrahigh specific surface area of 2710.
View Article and Find Full Text PDF