Publications by authors named "Zonghan Lyu"

Purpose: Evaluating intracranial aneurysm (IA) rupture risk is essential for guiding management. Although intrasaccular thrombosis (IST) is less common, it can contribute to aneurysm growth, mass effect, and rupture. Aneurysm wall enhancement (AWE) on high-resolution MRI (HR-MRI) offers valuable insight into IST and IA progression.

View Article and Find Full Text PDF

Temporal velocity-informatics (TVI) is a novel technique utilizing spatial analysis of time-resolved 3D velocity fields to quantify flow disturbance in vascular aneurysms. Although it can improve the characterization of intracranial aneurysms' (IA) rupture status, calculation of time-resolved 3D velocity fields using computational fluid dynamics (CFD) simulations limits its clinical translation. This study aims to test the feasibility of using IA's geometrical information in conjunction with machine learning (ML)-based regression methods to predict TVI parameters.

View Article and Find Full Text PDF

Objective: The rupture of intracranial aneurysms leads to subarachnoid hemorrhage. Detecting intracranial aneurysms before rupture and stratifying their risk is critical in guiding preventive measures. Point-based aneurysm segmentation provides a plausible pathway for automatic aneurysm detection.

View Article and Find Full Text PDF

A small fraction of intracranial aneurysms (IA) contains intrasaccular thrombosis (IST). This study explores the hemodynamic causes of IST formation in IAs. We performed computational hemodynamic analysis in 26 IAs: 13 thrombosed and 13 non-thrombosed.

View Article and Find Full Text PDF

. Selecting patients with high-risk intracranial aneurysms (IAs) is of clinical importance. Recent work in machine learning-based (ML) predictive modeling has demonstrated that lesion-specific hemodynamics within IAs can be combined with other information to provide critical insights for assessing rupture risk.

View Article and Find Full Text PDF

Intracranial aneurysms (IA) pose significant health risks and are often challenging to manage. Computational fluid dynamics (CFD) simulation has emerged as a powerful tool for understanding lesion-specific hemodynamics in and around IAs, aiding in the clinical management of patients with an IA. However, the current workflow of CFD simulations is time-consuming, complex, and labor-intensive and, thus, does not fit the clinical environment.

View Article and Find Full Text PDF

This paper presents a two-stenosis aorta model mimicking vortical flow in vascular aneurysms. More specifically, we propose to virtually induce two adjacent stenoses in the abdominal aorta to develop various vortical flow zones post stenoses. Computational fluid dynamics (CFD) simulations were conducted for the virtual two-stenosis model based on physiological and anatomical data (i.

View Article and Find Full Text PDF

Intraluminal thrombosis (ILT) plays a critical role in the progression of abdominal aortic aneurysms (AAA). Understanding the role of ILT can improve the evaluation and management of AAAs. However, compared with highly developed automatic vessel lumen segmentation methods, ILT segmentation is challenging.

View Article and Find Full Text PDF

Prior studies have shown that computational fluid dynamics (CFD) simulations help assess patient-specific hemodynamics in abdominal aortic aneurysms (AAAs); patient-specific hemodynamic stressors are frequently used to predict an AAA's growth. Previous studies have utilized both laminar and turbulent simulation models to simulate hemodynamics. However, the impact of different CFD simulation models on the predictive modeling of AAA growth remains unknown and is thus the knowledge gap that motivates this study.

View Article and Find Full Text PDF

"Image-based" computational fluid dynamics (CFD) simulations provide insights into each patient's hemodynamic environment. However, current standard procedures for creating CFD models start with manual segmentation and are time-consuming, hindering the clinical translation of image-based CFD simulations. This feasibility study adopts deep-learning-based image segmentation (hereafter referred to as Artificial Intelligence (AI) segmentation) to replace manual segmentation to accelerate CFD model creation.

View Article and Find Full Text PDF

With the success of U-Net or its variants in automatic medical image segmentation, building a fully convolutional network (FCN) based on an encoder-decoder structure has become an effective end-to-end learning approach. However, the intrinsic property of FCNs is that as the encoder deepens, higher-level features are learned, and the receptive field size of the network increases, which results in unsatisfactory performance for detecting low-level small/thin structures such as atrial walls and small arteries. To address this issue, we propose to keep the different encoding layer features at their original sizes to constrain the receptive field from increasing as the network goes deeper.

View Article and Find Full Text PDF

Developing fully automatic and highly accurate medical image segmentation methods is critically important for vascular disease diagnosis and treatment planning. Although advances in convolutional neural networks (CNNs) have spawned an array of automatic segmentation models converging to saturated high performance, none have explored whether CNNs can achieve (spatially) tunable segmentation. As a result, we propose multiple attention modules from a frequency-domain perspective to construct a unified CNN architecture for segmenting vasculature with desired (spatial) scales.

View Article and Find Full Text PDF

Computational hemodynamics is increasingly being used to quantify hemodynamic characteristics in and around abdominal aortic aneurysms (AAA) in a patient-specific fashion. However, the time-consuming manual annotation hinders the clinical translation of computational hemodynamic analysis. Thus, we investigate the feasibility of using deep-learning-based image segmentation methods to reduce the time required for manual segmentation.

View Article and Find Full Text PDF

Aneurysm hemodynamics is known for its crucial role in the natural history of abdominal aortic aneurysms (AAA). However, there is a lack of well-developed quantitative assessments for disturbed aneurysmal flow. Therefore, we aimed to develop innovative metrics for quantifying disturbed aneurysm hemodynamics and evaluate their effectiveness in predicting the growth status of AAAs, specifically distinguishing between fast-growing and slowly-growing aneurysms.

View Article and Find Full Text PDF

Our main objective is to investigate how the structural information of intraluminal thrombus (ILT) can be used to predict abdominal aortic aneurysms (AAA) growth status through an automated workflow. Fifty-four human subjects with ILT in their AAAs were identified from our database; those AAAs were categorized as slowly- (< 5 mm/year) or fast-growing (≥ 5 mm/year) AAAs. In-house deep-learning image segmentation models were used to generate 3D geometrical AAA models, followed by automated analysis.

View Article and Find Full Text PDF

We delineate abdominal aortic aneurysms, including lumen and intraluminal thrombosis (ILT), from contrast-enhanced computed tomography angiography (CTA) data in 70 patients with complete automation. A novel context-aware cascaded U-Net configuration enables automated image segmentation. Notably, auto-context structure, in conjunction with dilated convolutions, anisotropic context module, hierarchical supervision, and a multi-class loss function, are proposed to improve the delineation of ILT in an unbalanced, low-contrast multi-class labeling problem.

View Article and Find Full Text PDF

Fast-growing abdominal aortic aneurysms (AAA) have a high rupture risk and poor outcomes if not promptly identified and treated. Our primary objective is to improve the differentiation of small AAAs' growth status (fast versus slow-growing) through a combination of patient health information, computational hemodynamics, geometric analysis, and artificial intelligence. 3D computed tomography angiography (CTA) data available for 70 patients diagnosed with AAAs with known growth status were used to conduct geometric and hemodynamic analyses.

View Article and Find Full Text PDF

Objective: Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging.

View Article and Find Full Text PDF