Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
"Image-based" computational fluid dynamics (CFD) simulations provide insights into each patient's hemodynamic environment. However, current standard procedures for creating CFD models start with manual segmentation and are time-consuming, hindering the clinical translation of image-based CFD simulations. This feasibility study adopts deep-learning-based image segmentation (hereafter referred to as Artificial Intelligence (AI) segmentation) to replace manual segmentation to accelerate CFD model creation. Two published convolutional neural network-based AI methods (MIScnn and DeepMedic) were selected to perform CFD model extraction from three-dimensional (3D) rotational angiography data containing intracranial aneurysms. In this study, aneurysm morphological and hemodynamic results using models generated by AI segmentation methods were compared with those obtained by two human users for the same data. Interclass coefficients (ICC), Bland-Altman plots, and Pearson's correlation coefficients (PCC) were combined to assess how well AI-generated CFD models were performed. We found that almost perfect agreement was obtained between the human and AI results for all eleven morphological and five out of eight hemodynamic parameters, while a moderate agreement was obtained from the remaining three hemodynamic parameters. Given this level of agreement, using AI segmentation to create CFD models is feasible, given more developments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956116 | PMC |
http://dx.doi.org/10.1142/s0219519423400559 | DOI Listing |