A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms. | LitMetric

An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms.

Med Image Anal

Biomedical Engineering, Michigan Technological University, Houghton, MI United States; Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, Michigan, United States. Electronic address: jjiang1@m

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images.

Methods: The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results.

Results: Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed.

Conclusions: The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830590PMC
http://dx.doi.org/10.1016/j.media.2022.102697DOI Listing

Publication Analysis

Top Keywords

proposed aru-net
16
segmentation ias
12
aru-net model
12
attention residual
8
residual u-net
8
differential preprocessing
8
preprocessing geometric
8
geometric postprocessing
8
intracranial aneurysms
8
ias adjacent
8

Similar Publications