Publications by authors named "Zhongping Tan"

Protein and peptide aggregation poses substantial challenges in disease pathology and therapeutic development. While natural glycosylation may mitigate aggregation, its efficacy and underlying mechanisms remain poorly understood due to limited access to homogeneous samples with complex glycans. This study addresses these knowledge gaps by investigating the natural glycosylation of islet amyloid polypeptide (IAPP), a peptide with therapeutic potential for type 2 diabetes but problematic aggregation.

View Article and Find Full Text PDF

Glucagon, a 29-amino acid pancreatic hormone, plays a central role in glucose homeostasis through activation of the glucagon receptor (GCGR). While clinically essential for hypoglycemia rescue, its broader therapeutic applications face limitations due to challenging biophysical properties including poor solubility, strong aggregation tendency, and chemical instability, which currently require lyophilized formulations. Recent advances in peptide engineering and formulation science have enabled the development of next-generation glucagon analogs with enhanced stability and ready-to-use profiles.

View Article and Find Full Text PDF

Glycosylation plays a critical role in modulating protein and peptide properties, yet the impact of recently discovered natural mucin-type O-glycosylation on therapeutic peptides like glucagon remains underexplored due to challenges in obtaining homogeneous research samples. Here, we address this challenge by developing a streamlined multistep synthesis-one purification protocol, enabling the production of 21 glucagon glycoforms with systematically varied glycosylation patterns. Investigation of these glycoforms revealed a remarkable impact of natural glycosylation on two properties critical for glucagon: solubility increased by over 870-fold, and fibrillation was completely inhibited, even under stringent conditions, while biological activity in elevating blood glucose levels was preserved.

View Article and Find Full Text PDF

Glycosylation is a valuable tool for modulating protein solubility; however, the lack of reliable research strategies has impeded efficient progress in understanding and applying this modification. This study aimed to bridge this gap by investigating the solubility of a model glycoprotein molecule, the carbohydrate-binding module (CBM), through a two-stage process. In the first stage, an approach involving chemical synthesis, comparative analysis, and molecular dynamics simulations of a library of glycoforms was employed to elucidate the effect of different glycosylation patterns on solubility and the key factors responsible for the effect.

View Article and Find Full Text PDF

There is an increasing interest in using S-glycosylation as a replacement for the more commonly occurring O-glycosylation, aiming to enhance the resistance of glycans against chemical hydrolysis and enzymatic degradation. However, previous studies have demonstrated that these two types of glycosylation exert distinct effects on protein properties and functions. In order to elucidate the structural basis behind the observed differences, we conducted a systematic and comparative analysis of 6 differently glycosylated forms of a model glycoprotein, CBM, using NMR spectroscopy and molecular dynamic simulations.

View Article and Find Full Text PDF

The role of glycosylation in the binding of glycoproteins to carbohydrate substrates has not been well understood. The present study addresses this knowledge gap by elucidating the links between the glycosylation patterns of a model glycoprotein, a Family 1 carbohydrate-binding module (TrCBM1), and the thermodynamic and structural properties of its binding to different carbohydrate substrates using isothermal titration calorimetry and computational simulation. The variations in glycosylation patterns cause a gradual transition of the binding to soluble cellohexaose from an entropy-driven process to an enthalpy-driven one, a trend closely correlated with the glycan-induced shift of the predominant binding force from hydrophobic interactions to hydrogen bonding.

View Article and Find Full Text PDF

Therapeutic proteins have unique advantages over small-molecule drugs in the treatment of various diseases, such as higher target specificity, stronger pharmacological efficacy and relatively low side effects. These advantages make them increasingly valued in drug development and clinical practice. However, although highly valued, the intrinsic limitations in their physical, chemical and pharmacological properties often restrict their wider applications.

View Article and Find Full Text PDF

Glycoproteins obtained from cell culture supernatants or lysates generally exist as mixtures of over 100 differently glycosylated protein forms (glycoforms). The study of glycosylation is significantly impeded because of the heterogeneous nature of glycoproteins. To overcome this challenge, we developed and optimized a glycoform library-based strategy to investigate the role of protein glycosylation.

View Article and Find Full Text PDF

The development and application of commercially available automated peptide synthesizers has played an essential role in almost all areas of peptide and protein research. Recent advances in peptide synthesis method and solid-phase chemistry provide new opportunities for optimizing synthetic efficiency of peptide synthesizers. The efforts in this direction have led to the successful preparation of peptides up to more than 150 amino acid residues in length.

View Article and Find Full Text PDF

Insulin has been commonly adopted as a peptide drug to treat diabetes as it facilitates the uptake of glucose from the blood. The development of oral insulin remains elusive over decades owing to its susceptibility to the enzymes in the gastrointestinal tract and poor permeability through the intestinal epithelium upon dimerization. Recent experimental studies have revealed that certain O-linked glycosylation patterns could enhance insulin's proteolytic stability and reduce its dimerization propensity, but understanding such phenomena at the molecular level is still difficult.

View Article and Find Full Text PDF

Since the establishment of site-specific mutagenesis of single amino acids to interrogate protein function in the 1970s, biochemists have sought to tailor protein structure in the native cell environment. Fine-tuning the chemical properties of proteins is an indispensable way to address fundamental mechanistic questions. Unnatural amino acids (UAAs) offer the possibility to expand beyond the 20 naturally occurring amino acids in most species and install new and useful chemical functions.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how protein glycosylation affects the binding preferences of a specific carbohydrate-binding module (CBM) related to lignin and cellulose.
  • The researchers find that the glycosylation pattern significantly influences the CBM's affinity for these substrates, suggesting a complex relationship between glycan structure and binding specificity.
  • The results provide insights that could lead to advancements in glycoengineering, potentially enhancing the efficiency of industrial enzymes.
View Article and Find Full Text PDF

The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a high number of deaths in the world. To combat it, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate (HS) and sialic acid-containing glycolipids/glycoproteins.

View Article and Find Full Text PDF

Natural proteins are an important source of therapeutic agents and industrial enzymes. While many of them have the potential to be used as highly effective medical treatments for a wide range of diseases or as catalysts for conversion of a range of molecules into important product types required by modern society, problems associated with poor biophysical and biological properties have limited their applications. Engineering proteins with reduced side-effects and/or improved biophysical and biological properties is therefore of great importance.

View Article and Find Full Text PDF

The role of -linked -acetylglucosamine (-GlcNAc) modification in the cell cycle has been enigmatic. Previously, both -GlcNAc transferase (OGT) and -GlcNAcase (OGA) disruptions have been shown to derail the mitotic centrosome numbers, suggesting that mitotic GlcNAc oscillation needs to be in concert with mitotic progression to account for centrosome integrity. Here, using both chemical approaches and biological assays with HeLa cells, we attempted to address the underlying molecular mechanism and observed that incubation of the cells with the OGA inhibitor Thiamet-G strikingly elevates centrosomal distances, suggestive of premature centrosome disjunction.

View Article and Find Full Text PDF

Recent advances have demonstrated the feasibility and robustness of chemical synthesis for the production of homogeneously glycosylated protein forms (glycoforms). By taking advantage of the unmatchable flexibility and precision provided by chemical synthesis, the quantitative effects of glycosylation were obtained using chemical glycobiology approaches. These findings greatly advanced our fundamental knowledge of glycosylation.

View Article and Find Full Text PDF

Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. -linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting -mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs).

View Article and Find Full Text PDF

Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylation's importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level.

View Article and Find Full Text PDF

In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood.

View Article and Find Full Text PDF

Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics.

View Article and Find Full Text PDF

SH2B1 is a multidomain protein that serves as a key adaptor to regulate numerous cellular events, such as insulin, leptin, and growth hormone signaling pathways. Many of these protein-protein interactions are mediated by the SH2 domain of SH2B1, which recognizes ligands containing a phosphorylated tyrosine (pY), including peptides derived from janus kinase 2, insulin receptor, and insulin receptor substrate-1 and -2. Specificity for the SH2 domain of SH2B1 is conferred in these ligands either by a hydrophobic or an acidic side chain at the +3 position C-terminal to the pY.

View Article and Find Full Text PDF

Diabetes is a leading cause of death worldwide and results in over 3 million annual deaths. While insulin manages the disease well, many patients fail to comply with injection schedules, and despite significant investment, a more convenient oral formulation of insulin is still unavailable. Studies suggest that glycosylation may stabilize peptides for oral delivery, but the demanding production of homogeneously glycosylated peptides has hampered transition into the clinic.

View Article and Find Full Text PDF

Protein O-glycosylation is a diverse, common, and important post-translational modification of both proteins inside the cell and those that are secreted or membrane-bound. Much work has shown that O-glycosylation can alter the structure, function, and physical properties of the proteins to which it is attached. One gap remaining in our understanding of O-glycoproteins is how O-glycans might affect the folding of proteins.

View Article and Find Full Text PDF

Protein glycosylation has been shown to have a variety of site-specific and glycan-specific effects, but so far, the molecular logic that leads to such observations has been elusive. Understanding the structural changes that occur and being able to correlate those with the physical properties of the glycopeptide are valuable steps toward being able to predict how specific glycosylation patterns will affect the stability of glycoproteins. By systematically comparing the structural features of the O-glycosylated carbohydrate-binding module of a Trichoderma reesei-derived Family 7 cellobiohydrolase, we were able to develop a better understanding of the influence of O-glycan structure on the molecule's physical stability.

View Article and Find Full Text PDF

SH2 domains recognize phosphotyrosine (pY)-containing peptide ligands and play key roles in the regulation of receptor tyrosine kinase pathways. Each SH2 domain has individualized specificity, encoded in the amino acids neighboring the pY, for defined targets that convey their distinct functions. The C-terminal SH2 domain (PLCC) of the phospholipase C-γ1 full-length protein (PLCγ1) typically binds peptides containing small and hydrophobic amino acids adjacent to the pY, including a peptide derived from platelet-derived growth factor receptor B (PDGFRB) and an intraprotein recognition site (Y783 of PLCγ1) involved in the regulation of the protein's lipase activity.

View Article and Find Full Text PDF