Sensors (Basel)
August 2025
Language-guided multimodal fusion, which integrates information from both visible and infrared images, has shown strong performance in image fusion tasks. In low-light or complex environments, a single modality often fails to fully capture scene features, whereas fused images enable robots to obtain multidimensional scene understanding for navigation, localization, and environmental perception. This capability is particularly important in applications such as autonomous driving, intelligent surveillance, and search-and-rescue operations, where accurate recognition and efficient decision-making are critical.
View Article and Find Full Text PDFMicromachines (Basel)
February 2025
The deep learning object detection algorithm has been widely applied in the field of synthetic aperture radar (SAR). By utilizing deep convolutional neural networks (CNNs) and other techniques, these algorithms can effectively identify and locate targets in SAR images, thereby improving the accuracy and efficiency of detection. In recent years, achieving real-time monitoring of regions has become a pressing need, leading to the direct completion of real-time SAR image target detection on airborne or satellite-borne real-time processing platforms.
View Article and Find Full Text PDFWith the continuous development of wireless communication technology, the frequency band of 6G communication systems is moving towards higher frequencies such as millimeter waves and terahertz. In such high-frequency situations, wireless transmission requires antenna modules to be provided with characteristics of miniaturization, high integration, and high gain, which presents new challenges to the development of antenna technology. In this article, a 4 × 4 antenna array using multilayered low-temperature co-fired ceramic is proposed, operating in W-band, with a feeding network based on substrate-integrated waveguide, and an antenna element formed through the combination of a substrate-integrated cavity and surface parasitic patches, which guaranteed the array to possess the advantages of high integration and high gain.
View Article and Find Full Text PDFMicromachines (Basel)
August 2023
Compactness has obtained sufficient importance in wideband phase shifter design considerations, as it is directly related to fabrication cost. In this paper, a novel structure was presented to create compact broadband 180-degree phase shifter, which has the advantages of enhanced bandwidth and significantly reduced chip area. The proposed configuration consists of edge-coupled multi-microstrip lines (ECMML) and an artificial transmission line (ATL) with dual-shorted inductors, both of which have the periodic shunt load of capacitors.
View Article and Find Full Text PDFThis paper proposes a novel 8-18 GHz 90° switched T-type phase shifter (TPS). In contrast to the conventional TPS, the proposed TPS adds a compensation capacitance to greatly enhance the phase shifting capacity. Moreover, the designed structure also integrates a filtering compensation network, which can effectively achieve a flat relative phase shift in a wide band.
View Article and Find Full Text PDFMicromachines (Basel)
June 2023
To meet the application requirements of broadband radar systems for broadband power amplifiers, a Ku-band broadband power amplifier (PA) microwave monolithic integrated circuit (MMIC) based on a 0.15 µm gallium arsenide (GaAs) high-electron-mobility transistor (HEMT) technology is proposed in this paper. In this design, the advantages of the stacked FET structure in the broadband PA design are illustrated by theoretical derivation.
View Article and Find Full Text PDFMicromachines (Basel)
December 2022
In this paper, a novel wideband transition from a laminated waveguide (LWG) to an air-filled rectangular waveguide (RWG) is proposed for millimeter-wave integration solutions based on multilayer low-temperature co-fired ceramic (LTCC) technology. The integrated transition cavity is divided into several resonators by introducing five grounded via holes. Due to the magnetic wall existing in the symmetry plane, the equivalent circuit of the proposed transition can be simplified as a three-pole filter model to explain the working mechanism with wideband performance.
View Article and Find Full Text PDFInterference can degrade the detection performance of a radar system. To overcome the difficulty of target detection in unknown interference, in this paper we model the interference belonging to a subspace orthogonal to the signal subspace. We design three effective detectors for distributed target detection in unknown interference by adopting the criteria of the generalized likelihood ratio test (GLRT), the Rao test, and the Wald test.
View Article and Find Full Text PDFSensors (Basel)
March 2022
This study conducts an in-depth evaluation of imaging algorithms and software and hardware architectures to meet the capability requirements of real-time image acquisition systems, such as spaceborne and airborne synthetic aperture radar (SAR) systems. By analysing the principles and models of SAR imaging, this research creatively puts forward the fully parallel processing architecture for the back projection (BP) algorithm based on Field-Programmable Gate Array (FPGA). The processing time consumption has significant advantages compared with existing methods.
View Article and Find Full Text PDF