Controllable integration of inorganic nanoparticles (NPs) and metal-organic frameworks (MOFs) is leading to the creation of many new multifunctional materials. In this Research News, an emerging type of core-shell nanostructure, in which the inorganic NP cores are encapsulated by the MOF shells, is briefly introduced. Unique functions originating from the property synergies of different types of inorganic NP cores and MOF shells are highlighted, and insight into their future development is suggested.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2013
Helical nanofibres of silver(I)-glutathione (Ag-GSH) biocoordination polymer (BCP) are fabricated by introducing dimethyl sulfoxide into the mixture solution of Ag⁺ ions and L-GSH molecules. The prepared BCP nanofibres show hierarchical helical structures, which are constructed via twisting of small fibres. Water-soluble helices could be further cross-linked with Ca²⁺ ions to form a well-dispersed aqueous suspension.
View Article and Find Full Text PDFA novel and general method is proposed to construct three-dimensional graphene/metal oxide nanoparticle hybrids. For the first time, it is demonstrated that this graphene-based composite with open pore structures can be used as the high-performance capacitive deionization (CDI) electrode materials, which outperform currently reported materials. This work will offer a promising way to develop highly effective CDI electrode materials.
View Article and Find Full Text PDFThe catalytic activity of different-shaped and monodispersed palladium nanocrystals, including cubes, octahedra and rhombic dodecahedra, toward the electrochemical oxidation of formic acid has been systematically evaluated in both HClO4 and H2SO4 solutions. Notably, the cubic palladium nanocrystals wholly exposed with {100} facets exhibit the highest activity, while the rhombic dodecahedra with {110} facets show the lowest electrocatalytic performance. Furthermore, compared with HClO4 electrolyte, the catalytic activity is found to be obviously lower in H2SO4 solution likely due to the competitive adsorption of SO4(2-) ions and formic acid on the surface of Pd nanocrystals.
View Article and Find Full Text PDFJ Am Chem Soc
July 2013
The design and fabrication of chiral nanostructures is a promising approach to realize enantiomeric recognition and separation. In our work, gold nanorod@chiral mesoporous silica core-shell nanoparticles (GNR@CMS NPs) have been successfully synthesized. This novel material exhibits strong and tunable circular dichroism signals in the visible and near-infrared regions due to the optical coupling between the CMS shells and the GNR cores.
View Article and Find Full Text PDFA novel "raisin bun"-like nanocomposite, where Pd clusters are embedded in porphyrin matrix, is developed as a promising electrocatalyst. Thanks to the synergy between the Pd clusters and the porphyrin matrix, this composite exhibits a low oxidation potential, high mass activity and excellent stability toward electrochemical oxidation of formic acid, which opens new routes for the design of high-performance catalysts in fuel cells.
View Article and Find Full Text PDFThis prospective 2-year, single-center, randomized, placebo-controlled, open-label clinical trial was performed to evaluate the efficacy of low-dose testosterone undecanoate (TU) treatment on bone mineral density (BMD) and biochemical markers of bone turnover in elderly male osteoporosis with low serum testosterone. A total of 186 elderly male osteoporosis patients with low serum testosterone were randomized into three groups: low-dose TU (20 mg, per day), standard-dose TU (40 mg, per day), and placebo group with a 24-month followup. Since the 6th month in standard-dose TU group or since the 12th month followup in low-dose TU group and throughout the study, lumbar spine and femoral neck BMD and serum levels of free testosterone, estradiol, and bone alkaline phosphatase significantly increased.
View Article and Find Full Text PDFChem Commun (Camb)
May 2013
We demonstrate the on-chip preparation of size-controllable supramolecular gelatin nanoparticles (SGNs) with a quantum dot (QD) payload as matrix metalloproteinase (MMP) responsive cancer cell imaging probes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2013
We report here on a facile enzymatic polymerization protocol to prepare enzyme-poly(thiophene-3-boronic acid) (PTBA) polymeric biocomposites (PBCs) for high-performance mono-/bi-enzyme amperometric biosensing. Horseradish peroxidase (HRP)-catalyzed polymerization of thiophene-3-boronic acid (TBA) monomer was conducted in aqueous solution containing HRP (or plus glucose oxidase (GOx)) by either directly added or GOx-glucose generated oxidant H2O2. The mono-/bi-enzyme amperometric biosensors were prepared simply by casting the dialysis-isolated PBCs on Au-plated Au electrode (Auplate/Au), followed by coating with an outer-layer chitosan (CS) film.
View Article and Find Full Text PDFThe chemical structure and electronic properties of two-dimensional (2D) carbon-supported TiO₂, TiO₂-graphdiyne, and TiO₂-graphene composites have been studied by first-principles density functional theory. Calculation results show that TiO₂(001)-graphdiyne composites possess superior charge separation and oxidation properties, having the longest lifetimes of photoexcited carriers among all of the 2D composites containing TiO₂ of different facets. Our experimental results further proved that TiO₂(001)-graphdiyne composites could be a promising photocatalyst.
View Article and Find Full Text PDFPd@Ag core-shell nanocrystals are synthesized through a seed mediated method. Ag shells are found to be grown in a non-epitaxial growth manner, with lots of defects to release the strain originating from lattice mismatch.
View Article and Find Full Text PDFNon-Pt noble metal clusters like Au clusters are believed to be promising high performance catalysts for the oxygen reduction reaction (ORR) at the cathode of fuel cells, but they still suffer big problems during the catalysis reactions, such as a large amount of the capping agents being on the surface and easy occurrence of dissolution and aggregation. To overcome these obstacles, here, we present a novel and general strategy to grow ultrafine Au clusters and other metal (Pt, Pd) clusters on the reduced graphene oxide (rGO) sheets without any additional protecting molecule or reductant. Compared with the currently generally adopted nanocatalysts, including commercial Pt/C, rGO sheets, Au nanoparticle/rGO hybrids, and thiol-capped Au clusters of the same sizes, the as-synthesized Au cluster/rGO hybrids display an impressive eletrocatalytic performance toward ORR, for instance, high onset potential, superior methanol tolerance, and excellent stability.
View Article and Find Full Text PDFFor the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2012
Nanotechnology-based agrochemical delivery systems would ensure efficient and economical utilization of these very important agricultural inputs. In this study, mesoporous silica nanoparticles with particle diameters of -150 nm and pore sizes of -2.5 nm were synthesized via liquid crystal templating mechanism.
View Article and Find Full Text PDFChem Commun (Camb)
May 2012
Monodisperse inorganic supraparticles (SPs) are an emerging and hot research topic in the chemistry, physics and materials science communities in the past several years. Monodisperse inorganic SPs exhibit unique physiochemical properties due to their well-defined shape and distinctive topological structure. This review summarizes recent progress in the study of formation mechanism, properties and applications of inorganic monodisperse SPs.
View Article and Find Full Text PDFInspired by the layered hierarchical nano- and microstructures of natural nacre, flattened double-walled carbon nanotube (FDWCNT) reinforced epoxy composites are fabricated. Impressively, the prepared composites exhibit layered structures analogous to nacre, and the FDWCNT loading can reach 70 wt%, which results in superior mechanical properties that evidently outperform other existing materials.
View Article and Find Full Text PDF