ACS Appl Mater Interfaces
December 2023
Seawater electrolysis represents a viable alternative for large-scale synthesis of hydrogen (H), which is recognized as the most promising clean energy source, without relying on scarce fresh water. However, high energy cost and harmful chlorine chemistry in seawater limited its development. Herein, an effective catalyst based on a ruthenium nanoparticle-TiC MXene composite loaded on nickel foam (RuO-TiC/NF) with an open, fine, and homogeneous nanostructure was devised and synthesized by electrodeposition for high performance and stable overall seawater splitting.
View Article and Find Full Text PDFBioengineering (Basel)
March 2023
Far-infrared (FIR) is considered to be an ideal method to promote fatigue recovery due to its high permeability and strong radiation. In this paper, we report a flexible and wearable graphene heating device to help fatigue recovery of human exercise by using its high FIR divergence property. This study compares two different fatigue recovery methods, graphene far-infrared heating device hot application and natural recovery, over a 20 min recovery time among the male colleges' exhaustion exercise.
View Article and Find Full Text PDFSmart fire-warning sensors based on graphene oxide (GO) nanomaterials, via monitoring their temperature-responsive resistance transition, have attracted considerable interest for several years. However, an important question remains as to whether or not different oxidation degrees of the GO network can produce different impacts on fire-warning responses. In this study, we synthesized three types of GO nanoribbons (GONRs) with different oxidation degrees and morphologies, and thus prepared flame retardant polyethylene glycol (PEG)/GONR/montmorillonite (MMT) nanocomposite papers via a facile, solvent free, and low-temperature evaporation-induced assembly approach.
View Article and Find Full Text PDFFire prevention and safety of combustible materials is a global challenge. To reduce their high fire risk, traditional smoke detectors are widely used indoor via detecting smoke product after combustion; however, they usually show a long response time and limitation for outdoor use. Herein, we report a temperature-induced electrical resistance transition of graphene oxide wide-ribbon (GOWR) wrapped sponges to reliably monitor fire safety of the combustible materials.
View Article and Find Full Text PDF