Publications by authors named "Zhining Sun"

The systemic benefits of exercise are partially attributed to exerkines release via extracellular vesicles, prompting extensive research on the effects of exercise on these vesicles. However, whether and how exercise modulates intracellular vesicle chemistry (e.g.

View Article and Find Full Text PDF

Exploring the time-resolved dynamics of neurochemicals is essential for deciphering neuronal functions, intercellular communication, and neurophysiological or pathological mechanisms. However, the complex interplay among neurochemicals between neurocytes, coupled with extensive chemical signal crosstalk, puts simultaneous sensing of multiple neurochemicals into a longstanding challenge. Herein, we report a chemistry-informed generative neural network (CIGNN) model to separate the Faradaic and the non-Faradaic components from voltammetric currents, minimizing their mutual interference and enhancing quantitative accuracy.

View Article and Find Full Text PDF

Psychosocial stress, a pervasive factor in mental health disorders, is tightly linked to serotonin (5-HT) dysregulation. Real-time electrochemical monitoring of 5-HT in vivo is challenged by interference from vitamin C (Vc) and biofouling, requiring invasive pretreatments. We present a self-powered aptamer-engineered galvanic sensor (aptGRP) that integrates phosphorothioate aptamers with a redox potentiometric mechanism, achieving 21.

View Article and Find Full Text PDF

Detecting multiple targets in living cells is important in cell biology. However, multiplexed fluorescence imaging beyond two-to-three targets remains a technical challenge. Herein, we introduce a multiplexed imaging strategy, 'sequential Fluorogenic RNA Imaging-Enabled Sensor' (seqFRIES), which enables live-cell target detection via sequential rounds of imaging-and-stripping.

View Article and Find Full Text PDF

Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid-liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation.

View Article and Find Full Text PDF

Single-cell detection of multiple target analytes is an important goal in cell biology. However, due to the spectral overlap of common fluorophores, multiplexed fluorescence imaging beyond two-to-three targets inside living cells remains a technical challenge. Herein, we introduce a multiplexed imaging strategy that enables live-cell target detection via sequential rounds of imaging-and-stripping process, which is named as "sequential Fluorogenic RNA Imaging-Enabled Sensor" (seqFRIES).

View Article and Find Full Text PDF

Living systems contain various functional membraneless organelles that can segregate selective proteins and RNAs via liquid-liquid phase separation. Inspired by nature, many synthetic compartments have been engineered in vitro and in living cells, mostly focused on protein-scaffolded systems. Herein, we introduce a nature-inspired genetically encoded RNA tag to program cellular condensate formations and recruit non-phase-transition target RNAs to achieve functional modulation.

View Article and Find Full Text PDF

RNA-based nanostructures and molecular devices have become popular for developing biosensors and genetic regulators. These programmable RNA nanodevices can be genetically encoded and modularly engineered to detect various cellular targets and then induce output signals, most often a fluorescence readout. Although powerful, the high reliance of fluorescence on the external excitation light raises concerns about its high background, photobleaching, and phototoxicity.

View Article and Find Full Text PDF

Guanosine tetra- and pentaphosphate, (p)ppGpp, are important alarmone nucleotides that regulate bacterial survival in stressful environment. A direct detection of (p)ppGpp in living cells is critical for our understanding of the mechanism of bacterial stringent response. However, it is still challenging to image cellular (p)ppGpp.

View Article and Find Full Text PDF

Phytophthora infestans is the pathogen causing potato late blight, one of the most serious diseases of potato. Myxobacteria have become a valuable biological control resource due to their preponderant abilities to produce various secondary metabolites with novel structure and remarkable biological activity. In this study, Myxococcus xanthus strain B25-I-1, which exhibited strong antagonistic activity against P.

View Article and Find Full Text PDF

Sensors based on fluorogenic RNA aptamers have emerged in recent years. These sensors have been used for in vitro and intracellular detection of a broad range of biological and medical targets. However, the potential application of fluorogenic RNA-based sensors for point-of-care testing is still little studied.

View Article and Find Full Text PDF

Genetically encoded RNA devices have emerged for various cellular applications in imaging and biosensing, but their functions as precise regulators in living systems are still limited. Inspired by protein photosensitizers, we propose here a genetically encoded RNA aptamer based photosensitizer (GRAP). Upon illumination, the RNA photosensitizer can controllably generate reactive oxygen species for targeted cell regulation.

View Article and Find Full Text PDF

Imaging the cellular dynamics of metabolites and signaling molecules is critical for understanding various metabolism and signal transduction pathways. Genetically encoded RNA-based sensors are emerging powerful tools for this purpose. However, it was challenging to use these sensors to precisely determine the intracellular concentrations of target analytes.

View Article and Find Full Text PDF

Objective: Use independent diagnostic data to analyze the screening effectiveness of the pre-Registry commercial driver medical examination (CDME) for obstructive sleep apnea (OSA), and its sensitivity for hypertension; analyze certification lengths where relevant.

Methods: CDME screening results for 1668 drivers were compared to polysomnogram diagnostic test results, and CDME screening results were evaluated for 1155 drivers with at least one insurance claim with a hypertension diagnostic code. Any CDME documentation of the medical condition was considered as detection by screening.

View Article and Find Full Text PDF

Genetically encodable sensors have been widely used in the detection of intracellular molecules ranging from metal ions and metabolites to nucleic acids and proteins. These biosensors are capable of monitoring in real-time the cellular levels, locations, and cell-to-cell variations of the target compounds in living systems. Traditionally, the majority of these sensors have been developed based on fluorescent proteins.

View Article and Find Full Text PDF