Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA-based nanostructures and molecular devices have become popular for developing biosensors and genetic regulators. These programmable RNA nanodevices can be genetically encoded and modularly engineered to detect various cellular targets and then induce output signals, most often a fluorescence readout. Although powerful, the high reliance of fluorescence on the external excitation light raises concerns about its high background, photobleaching, and phototoxicity. Bioluminescence signals can be an ideal complementary readout for these genetically encoded RNA nanodevices. However, RNA-based real-time bioluminescent reporters have been rarely developed. In this study, we reported the first type of genetically encoded RNA-based bioluminescence resonance energy transfer (BRET) sensors that can be used for real-time target detection in living cells. By coupling a luciferase bioluminescence donor with a fluorogenic RNA-based acceptor, our BRET system can be modularly designed to image and detect various cellular analytes. We expect that this novel RNA-based bioluminescent system can be potentially used broadly in bioanalysis and nanomedicine for engineering biosensors, characterizing cellular RNA-protein interactions, and high-throughput screening or imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630924PMC
http://dx.doi.org/10.1021/acssensors.2c02213DOI Listing

Publication Analysis

Top Keywords

genetically encoded
16
encoded rna-based
8
rna-based bioluminescence
8
bioluminescence resonance
8
resonance energy
8
energy transfer
8
transfer bret
8
bret sensors
8
rna nanodevices
8
detect cellular
8

Similar Publications

The OsbZIP35-COR1-OsTCP19 module modulates cell proliferation to regulate grain length and weight in rice.

Sci Adv

September 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.

Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.

View Article and Find Full Text PDF

(phosphatidylserine synthase 1) encodes an enzyme that facilitates production of phosphatidylserine (PS), which mediates a global immunosuppressive signal. Here, based on in vivo CRISPR screen, we identified PTDSS1 as a target to improve anti-PD-1 therapy. Depletion of in tumor cells increased expression of interferon-γ (IFN-γ)-regulated genes, including , , , and , even in the absence of IFN-γ stimulation in vitro.

View Article and Find Full Text PDF

Understanding how cells control their biophysical properties during development remains a fundamental challenge. While macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we found that tissues maintain mesoscale properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.

View Article and Find Full Text PDF

Functional, immunogenetic, and structural convergence in influenza immunity between humans and macaques.

Sci Transl Med

September 2025

Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Human B cell immunity to the influenza hemagglutinin (HA) stem, a universal vaccine target, is often stereotyped and immunogenetically restricted, posing hurdles to study outside of humans. Here, we show that cynomolgus macaques vaccinated with an HA stem immunogen elicit humanlike public B cell lineages targeting two major conserved sites of vulnerability, the central stem and anchor epitopes. Central stem antibodies were predominantly derived from V1-138, the macaque homolog of human V1-69, a V gene preferentially used in human central stem broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Efficiency of the cytochrome c oxidase subunit II gene for the delimitation of termite species (Blattodea: Isoptera) in the state of Paraíba, northeastern Brazil.

PLoS One

September 2025

Laboratório de Termitologia, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.

With the aim of expanding the possibilities of identifying termite species, in the present study we generated genetic data based on sequences of the mitochondrial gene encoding cytochrome c oxidase subunit II (COII) for termites (Blattodea: Isoptera) occurring in the state of Paraíba, northeastern Brazil. The genetic data were obtained from 135 COII sequences identified in 28 genera and 48 species. These are the first COII sequences for 15 taxa (31.

View Article and Find Full Text PDF