Allocation of leaf phosphorus (P) among different functional fractions represents a crucial adaptive strategy for optimizing P use. However, it remains challenging to monitor the variability in leaf P fractions and, ultimately, to understand P-use strategies across diverse plant communities. We explored relationships between five leaf P fractions (orthophosphate P, P; lipid P, P; nucleic acid P, P; metabolite P, P; and residual P, P) and 11 leaf economic traits of 58 woody species from three biomes in China, including temperate, subtropical and tropical forests.
View Article and Find Full Text PDFAdaptations of plants to phosphorus (P) deficiency include reduced investment of leaf P in storage (orthophosphates in vacuoles), nucleic acids and membrane lipids. Yet, it is unclear how these adaptations are associated with plant ecological strategies. Five leaf P fractions (orthophosphate P, P ; metabolite P, P ; nucleic acid P, P ; lipid P, P ; and residual P, P ) were analysed alongside leaf economic traits among 35 Australian woody species from three habitats: one a high-P basalt-derived soil and two low-P sandstone-derived soils, one undisturbed and one disturbed by human activities with artificial P inputs.
View Article and Find Full Text PDFAmong triple-negative breast cancer (TNBC) subtypes, the basal-like 2 (BL2) subtype shows the lowest survival rate and the highest risk of metastasis after treatment with chemotherapy. Research has shown that αB-crystallin (CRYAB) is more highly expressed in the basal-like subtypes than in the other subtypes and is associated with brain metastasis in TNBC patients. We therefore hypothesized that αB-crystallin is associated with increased cell motility in the BL2 subtype after treatment with chemotherapy.
View Article and Find Full Text PDFTree roots not only acquire readily-usable soil nutrients but also affect microbial decomposition and manipulate nutrient availability in their surrounding soils, that is, rhizosphere effects (REs). Thus, REs challenge the basic understanding of how plants adapt to the environment and co-exist with other species. Yet, how REs vary among species in response to species-specific bulk soil nutrient cycling is not well-known.
View Article and Find Full Text PDFLeaf anatomy varies with abiotic factors and is an important trait for understanding plant adaptive responses to environmental conditions. Leaf mass per area (LMA) is a key morphological trait and is related to leaf performance, such as light-saturated photosynthetic rate per leaf mass, leaf mechanical strength, and leaf lifespan. LMA is the multiplicative product of leaf thickness (LT) and leaf density (LD), both of which vary with leaf anatomy.
View Article and Find Full Text PDFNutrient resorption, a process by which plants degrade organic compounds and resorb their nutrients from senescing tissues, is a crucial plant function to increase growth and fitness in nutrient-poor environments. Tropical trees on phosphorus (P)-poor soils are particularly known to have high P-resorption efficiency (PRE, the percentage of P resorbed from senescing leaves before abscission per total P in green leaves). However, the biochemical mechanisms underlying this greater PRE remain unclear.
View Article and Find Full Text PDFGenomewide markers enable us to study genetic differentiation within a species and the factors underlying it at a much higher resolution than before, which advances our understanding of adaptation in organisms. We investigated genomic divergence in Metrosideros polymorpha, a woody species that occupies a wide range of ecological habitats across the Hawaiian Islands and shows remarkable phenotypic variation. Using 1659 single nucleotide polymorphism (SNP) markers annotated with the genome assembly, we examined the population genetic structure and demographic history of nine populations across five elevations and two ages of substrates on Mauna Loa, the island of Hawaii.
View Article and Find Full Text PDFMetrosideros polymorpha, a dominant tree species in the Hawaiian Islands, shows an extreme phenotypic polymorphism both across gradients of climatic/edaphic conditions and within populations, making it a potentially useful model species for evolutionary study. In order to understand how the phenotypic diversity is maintained within populations as well as across populations, we examined the diversities of several leaf and stem functional traits across five elevations and two soil substrates on the volcanic mountain of Mauna Loa, on the island of Hawaii. Leaf dry mass per area (LMA), a key leaf functional trait, was particularly focused on and analyzed in relation to its underlying components-namely, tissue LMA and trichome LMA (LMA = tissue LMA + trichome LMA).
View Article and Find Full Text PDF