Publications by authors named "Yuanxue Li"

Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between acc. WT and a natural fiberless mutant, .

View Article and Find Full Text PDF

Fourteen stable QTL for LP in introgression population of G. mustelinum were detected across multiple environments. GmAOC4 encoding allene-oxide cyclase was identified as the candidate gene for the major locus qLP-D12-3.

View Article and Find Full Text PDF

Introduction: Fiber strength is a critical determinant of fiber quality, with stronger fibers being highly preferred in the cotton textile industry. However, the genetic basis and the specific regulatory mechanism underlying the formation of cotton fiber strength remain largely unknown.

Objectives: To explore fiber strength-related genes, QTL mapping, map-based cloning, and gene function verification were conducted in a backcross inbred line BS41 derived from interspecific hybridization between upland cotton and sea-island cotton.

View Article and Find Full Text PDF

Naturally colored cotton (NCC; Gossypium spp.) does not require additional chemical dyeing and is an environmentally friendly textile material with great research potential and applications. Our previous study using linkage and association mapping identified TRANSPARENT TESTA 2 (Gh_TT2) as acting on the proanthocyanin synthesis pathway.

View Article and Find Full Text PDF

Introduction: Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare.

Objectives: We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton.

View Article and Find Full Text PDF

Structural variations (SVs) are critical factors affecting genome evolution and important traits. However, identification results and functional analyses of SVs in upland cotton are rare. Here, based on the genetic relationships, breeding history and cumulative planting area of upland cotton in China, nine predominant cultivars from the past 60 years (1950s-2010s) were selected for long read sequencing to uncover genic variations and breeding improvement targets for this crop.

View Article and Find Full Text PDF

A fiber length QTL, qFL-c10-1, was fine-mapped to a 96.5-kb region containing one gene that has not been characterized in plants. Fiber length is an important component of cotton fiber quality, which is associated with other quality properties such as fiber strength, fiber maturity, and fineness.

View Article and Find Full Text PDF

Red foliated cotton is a typical dominant mutation trait in upland cotton (Gossypium hirsutum). Although mutants have been described, few responsible genes have been identified and characterized. In this study, we performed map-based cloning of the red foliated mutant gene (Re) derived from the cross between G.

View Article and Find Full Text PDF