Publications by authors named "Ying-Ao Chen"

There is growing indication that protecting the retinal pigment epithelium (RPE) against mitochondrial damage is crucial for preventing RPE cell dysfunction and retinal degeneration. However, the molecular mechanisms remain largely unknown. Here, we show that microphthalmia-associated transcription factor (MITF), a potent antioxidant inducer in RPE, promotes mitochondrial fusion in RPE cells and protects them from mitochondrial uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced mitochondrial damage in ARPE-19 or mouse primary RPE cells ex vivo and Mitf heterozygous mice (Mitf-/+), Mitf-overexpressing transgenic mice (Dct-Mitf) or AAV mediated MITF overexpression mice in vivo.

View Article and Find Full Text PDF

Cancer is a complex disease driven by mutations in the genes that play critical roles in cellular processes. The identification of cancer driver genes is crucial for understanding tumorigenesis, developing targeted therapies and identifying rational drug targets. Experimental identification and validation of cancer driver genes are time-consuming and costly.

View Article and Find Full Text PDF

Background: Sarcopenia is known as a decline in skeletal muscle quality and function that is associated with age. Sarcopenia is linked to diverse health problems, including endocrine-related diseases. Environmental chemicals (ECs), a broad class of chemicals released from industry, may influence muscle quality decline.

View Article and Find Full Text PDF

Epigenetic regulation contributes to the dysregulation of gene expression involved in cancer biology. Nevertheless, the roles of epigenetic regulators (ERs) in tumor immunity and immune response remain basically unclear. Here, we developed the epigenetic regulator in immunology (EPRIM) approach to identify immune-related ERs and comprehensively dissected the ER regulation in tumor immune response across 33 cancers.

View Article and Find Full Text PDF

The decreased antioxidant capacity in the retinal pigment epithelium (RPE) is the hallmark of retinal degenerative diseases including age-related macular degeneration (AMD). Nevertheless, the exact regulatory mechanisms underlying the pathogenesis of retinal degenerations remain largely unknown. Here we show in mice that deficiencies in Dapl1, a susceptibility gene for human AMD, impair the antioxidant capacity of the RPE and lead to age-related retinal degeneration in the 18-month-old mice homozygous for a partial deletion of Dapl1.

View Article and Find Full Text PDF

Purpose: To determine whether SIRT1 regulates high glucose (HG)-induced inflammation and cataract formation through modulating TXNIP/NLRP3 inflammasome activation in human lens epithelial cells (HLECs) and rat lenses.

Methods: HG stress from 25 to 150 mM was imposed on HLECs, with treatments using small interfering RNAs (siRNAs) targeting NLRP3, TXNIP, and SIRT1, as well as a lentiviral vector (LV) for SIRT1. Rat lenses were cultivated with HG media, with or without the addition of NLRP3 inhibitor MCC950 or SIRT1 agonist SRT1720.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a hallmark of the pathogenesis of proliferative vitreoretinopathy (PVR) that can lead to severe vision loss. Nevertheless, the precise regulatory mechanisms underlying the pathogenesis of PVR remain largely unknown. Here, we show that the expression of death-associated protein-like 1 (DAPL1) is downregulated in PVR membranes and that DAPL1 deficiency promotes EMT in RPE cells in mice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied

Filename: drivers/Session_files_driver.php

Line Number: 365

Backtrace:

File: /var/www/html/index.php
Line: 317
Function: require_once