Publications by authors named "Yeqing Wan"

Aiming at two-phase flow-induced noise of refrigerant in automotive heat pump air conditioner, the influence of the changes of pressure, flow rate and gas-phase volume fraction on the acoustic radiation produced by refrigerant in the process of phase change of electronic expansion valve is analyzed by constructing the refrigerant cavitation model and acoustic radiation model. It is found that the sudden pressure drop of the refrigerant leads to the phase change, forming the cavitation phenomenon, which in turn generates noise. Through CFD numerical simulation, the characteristics of the flow field distribution under different working conditions are explored, and the correlation between thermodynamic parameters and acoustic parameters is revealed.

View Article and Find Full Text PDF

Isothermal autocatalytic DNA circuits have been proven to be versatile and powerful biocomputing platforms by virtue of their self-sustainable and self-accelerating reaction profiles, yet they are currently constrained by their complicated designs, severe signal leakages, and unclear reaction mechanisms. Herein, we developed a simpler-yet-efficient autocatalytic assembly circuit (AAC) for highly robust bioimaging in live cells and mice. The scalable and sustainable AAC system was composed of a mere catalytic DNA assembly reaction with minimal strand complexity and, upon specific stimulation, could reproduce numerous new triggers to expedite the whole reaction.

View Article and Find Full Text PDF

Constructing artificial domino nanoarchitectures, especially dynamic DNA circuits associated with the actuation of biological functions inside live cells, represents a versatile and powerful strategy to regulate the behaviors and fate of various living entities. However, the stepwise operation of conventional DNA circuits always relies on freely diffusing reactants, which substantially slows down their operation rate and efficiency. Herein, a self-adaptive localized catalytic circuit (LCC) is developed to execute the self-sustained bioorthogonal assembly of DNA nanosponges within a crowded intracellular environment.

View Article and Find Full Text PDF

Polynucleotide kinase (PNK) plays an essential role in various cellular events by regulating phosphorylation processes, and abnormal homeostasis of PNK could cause many human diseases. Herein, we proposed an autocatalytic hybridization system (AHS) through the elaborate integration of hybridization chain assembly (HCA) and catalytic DNA assembly (CDA) that enables a highly efficient positive feedback amplification. The PNK-targeting AHS biosensor is composed of three modules: a recognition module, an HCA amplification module, and a CDA autocatalytic module.

View Article and Find Full Text PDF

Functional DNA nanostructures have been widely used in various bioassay fields. Yet, the programmable assembly of functional DNA nanostructures in living cells still represents a challenging goal for guaranteeing the sensitive and specific biosensing utility. In this work, we report a self-catalytic DNA assembly (SDA) machine by using a feedback deoxyribozyme (DNAzyme)-amplified branched DNA assembly.

View Article and Find Full Text PDF

The epigenetic modification of nucleic acids represents a versatile approach for achieving high-efficient control over gene expression and transcription and could dramatically expand their biosensing and therapeutic applications. Demethylase-involved removal of N6-methyladenine (mA) represents one of the vital epigenetic reprogramming events, yet its direct intracellular evaluation and as-guided gene regulation are extremely rare. The endonuclease-mimicking deoxyribozyme (DNAzyme) is a catalytically active DNA that enables the site-specific cleavage of the RNA substrate, and several strategies have imparted the magnificent responsiveness to DNAzyme by using chemical and light stimuli.

View Article and Find Full Text PDF