Publications by authors named "Yandao Chen"

The application of reduced graphene oxide (RGO) is increasing, but its impact on the behavior of co-contaminants like triclosan-a pervasive antimicrobial agent-in soil-plant systems remains unclear. This study aimed to investigate the effect of nano-sized RGO on the residues, uptake, and metabolism of triclosan in a soil-radish plant system using C-labeled triclosan and high-resolution mass spectrometry techniques. At RGO concentrations of 50-500 mg kg, triclosan accumulation in radish decreased by 13.

View Article and Find Full Text PDF

Due to the growing environmental and health concerns surrounding bisphenol S (BPS) as a common bisphenol A (BPA) substitute, this study investigated the metabolic pathways and tissue-specific accumulation of BPS in flowering cabbage under hydroponic conditions, revealing key insights into plant detoxification processes and potential human health risks. Over a 32-day exposure of 5 mg LC-BPS, 60.2 ± 3.

View Article and Find Full Text PDF

Introduction: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood.

Objective: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system.

View Article and Find Full Text PDF

Biosynthetic metal sulfides showed great application prospects in the environmental treatment against high-valence metal pollutants. However, the efficiency of biosynthesis, agglomeration during the reaction process, and the formation of the passivation layer during the reduction process were always the important factors restricting its development. This study explored the composition of the culture medium to promote the growth of highly corrosive sulfate-reducing bacteria (SRB) and its metabolism to produce FeS nanoparticles (NPs).

View Article and Find Full Text PDF

Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis.

View Article and Find Full Text PDF

Little information is known regarding how the lagged pollution of polycyclic aromatic hydrocarbon (PAH) influenced the environment and human health after an e-waste dismantling site was rebuilt. This study investigated the characteristics, sources, and risk assessment of PAHs in a rebuilt e-waste site and its surrounding farmland by analyzing the samples of soil, dust, water, and vegetable. Concentrations of PAHs in soil, vegetable and water in the rebuilt site were relatively higher than in its surrounding farmland.

View Article and Find Full Text PDF

Bisphenol S (BPS), being structurally similar to bisphenol A (BPA), has been widely used as an alternative to BPA in industrial applications. However, in-depth studies on the environmental behavior and fate of BPS in various soils have been rarely reported. Here, C-labeled BPS was used to investigate its mineralization, bound residues (BRs) formation and extractable residues (ERs) in three soils for 64 days.

View Article and Find Full Text PDF

Reduced graphene oxide (RGO) is one of common carbon nanomaterials, which is widely used in various fields. Triclosan is an antimicrobial agent added in pharmaceuticals and personal care products. Extensive release of RGO and triclosan has posed potential risks to humans and the environment.

View Article and Find Full Text PDF

Triclosan is an antimicrobial agent that is ubiquitously present in water, biosolids and soil. Current agricultural practices, such as irrigation with treated wastewater and soil amendment with biosolids, often cause further triclosan contamination in agricultural fields. However, the fate and crop uptake of triclosan in agrofood systems and related human exposure are still not fully understood.

View Article and Find Full Text PDF