Publications by authors named "Xufeng Xue"

Despite their significance, the genetic and molecular bases of neurodevelopmental disorders remain poorly understood. In this study, using human brain organoids and mouse models, we show that loss of , a gene closely associated with microcephaly, disrupts progenitor identity, prolongs mitosis, and alters regional patterning in the forebrain. knockout leads to a caudal identity shift of neural progenitor cells in the organoids and mouse brains, coinciding with aberrant ERK signaling.

View Article and Find Full Text PDF

Acoustic impedance enables many interesting acoustic applications. However, acoustic impedance for gas sensing is rare and difficult. Here we introduce a micro-nano surface acoustic wave (SAW) chip based on the acoustic impedance effect to achieve ultra-fast and wide-range gas sensing.

View Article and Find Full Text PDF

Currently, underwater sensor networks are extensively applied for environmental monitoring, disaster prediction, etc. Nevertheless, owing to the complicacy of the underwater environment, the limited energy of underwater sensor nodes, and the high latency of hydroacoustic channels, the energy-efficient operation of underwater sensor networks has become an important challenge. In this paper, a high-efficiency clustering routing protocol in AUV-assisted underwater sensor networks (HECRA) is proposed to address the energy limitations and low data transmission reliability in underwater sensor networks.

View Article and Find Full Text PDF

The lung is characterized by high elasticity and complex structure, which implies that the lung is capable of undergoing complex deformation and the shape variable is substantial. Large deformation estimation poses significant challenges to lung image registration. The traditional U-Net architecture is difficult to cover complex deformation due to its limited receptive field.

View Article and Find Full Text PDF

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated biochemical and biomechanical events.

View Article and Find Full Text PDF

PdNi alloy thin films demonstrate exceptional hydrogen sensing performance and exhibit significant potential for application in surface acoustic wave (SAW) hydrogen sensors. However, the long-term stability of SAW H sensors utilizing PdNi films as catalysts experiences a substantial decrease during operation. In this paper, X-ray photoelectron spectroscopy (XPS) is employed to investigate the failure mechanisms of PdNi thin films under operational conditions.

View Article and Find Full Text PDF

In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force.

View Article and Find Full Text PDF

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution.

View Article and Find Full Text PDF

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis involves intricately orchestrated bio-chemical and -mechanical events.

View Article and Find Full Text PDF

To prevent the potential failure of the surface acoustic wave (SAW) atomizer caused by the concentration of thermal stresses, this study investigates the thermal elevation process inherent to the operation of the surface wave atomizer. Subsequently, a method for temperature regulation is proposed. By collecting the temperature rise data of SAW atomizers with water, olive oil, and glycerol at 5/6/7 Watts (W) of power, the temperature curves of the atomizer surface under different conditions are obtained, and the stress changes in the working process are simulated additionally.

View Article and Find Full Text PDF

Acoustic tweezing cytometry (ATC) is an ultrasound-based biophysical technique that has shown the capability to promote differentiation of human pluripotent stem cells (hPSCs). This study systematically examined how hPSCs respond to cyclic mechanical strains applied by ATC via displacement of integrin-bound microbubbles (averaged diameter of 4.3 µm) using ultrasound pulses (acoustic pressure 0.

View Article and Find Full Text PDF

Lung image registration can effectively describe the relative motion of lung tissues, thereby helping to solve series problems in clinical applications. Since the lungs are soft and fairly passive organs, they are influenced by respiration and heartbeat, resulting in discontinuity of lung motion and large deformation of anatomic features. This poses great challenges for accurate registration of lung image and its applications.

View Article and Find Full Text PDF
Article Synopsis
  • * Microfluidics technology is being applied to create advanced embryoids and organoids, allowing for better control and reproducibility in experiments.
  • * Recent advancements show that microfluidics can enhance these models by establishing chemical gradients, improving transport, applying mechanical forces, and facilitating tissue studies, thereby benefiting both basic and applied research.
View Article and Find Full Text PDF

Despite its clinical and fundamental importance, our understanding of early human development remains limited. Stem cell-derived, embryo-like structures (or embryoids) allowing studies of early development without using natural embryos can potentially help fill the knowledge gap of human development. Herein, transcriptome at the single-cell level of a human embryoid model was profiled at different time points.

View Article and Find Full Text PDF

Embryonic development is a fundamental physiological process that can provide tremendous insights into stem cell biology and regenerative medicine. In this process, cell fate decision is highly heterogeneous and dynamic, and investigations at the single-cell level can greatly facilitate the understanding of the molecular roadmap of embryonic development. Rapid advances in the technology of single-cell sequencing offer a perfectly useful tool to fulfill this purpose.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases . However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) have the intrinsic capacity to self-organize and generate patterned tissues. In vitro models that coax hESCs to form embryonic-like structures by modulating physical environments and priming with chemical signals have become a powerful tool for dissecting the regulatory mechanisms underlying early human development. Here we present a 3D suspension culture system of hESCs that can generate post-implantation, pre-gastrulation embryonic-like tissues in an efficient and controllable manner.

View Article and Find Full Text PDF

Embryogenesis is directed by morphogens that induce differentiation within a defined tissue geometry. Tissue organization is mediated by cell-cell and cell-extracellular matrix (ECM) adhesions and is modulated by cell tension and tissue-level forces. Whether cell tension regulates development by modifying morphogen signaling is less clear.

View Article and Find Full Text PDF

Gap junctions (GJs), which are proteinaceous channels, couple adjacent cells by permitting direct exchange of intracellular molecules with low molecular weights. GJ intercellular communication (GJIC) plays a critical role in regulating behaviors of human embryonic stem cells (hESCs), affecting their proliferation and differentiation. Here we report a novel use of sonoporation that enables single cell intracellular dye loading and dynamic visualization/quantification of GJIC in hESC colonies.

View Article and Find Full Text PDF

The influences of environment, such as temperature, humidity and interfering gases, on the performance of a surface acoustic wave (SAW) sensor in the detection of 2-chloroethyl ethyl sulfide (CEES) were invested. The 150 MHz SAW dual delay lines were used, coated with a poly(epichlorohydrin) (PECH) thin layer, and CEES was detected under different concentrations. Linear correlation between the frequency-shift and the exposure time of the sensor to CEES could be observed, and the limit of CEES could be detected as low as 1.

View Article and Find Full Text PDF

Leveraging the developmental potential and self-organizing property of human pluripotent stem (hPS) cells, researchers have developed tractable models of human embryonic development. Owing to their compatibility to live imaging, genome editing, mechanical perturbation and measurement, these models offer promising quantitative experimental platforms to advance human embryology and regenerative medicine. Herein, we provide a review of recent progress in using hPS cells to generate models of early human neural development or neurulation, including neural induction and regional patterning of the neural tube.

View Article and Find Full Text PDF

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells.

View Article and Find Full Text PDF

During early post-implantation human embryogenesis, the epiblast (EPI) within the blastocyst polarizes to generate a cyst with a central lumen. Cells at the uterine pole of the EPI cyst then undergo differentiation to form the amniotic ectoderm (AM), a tissue essential for further embryonic development. While the causes of early pregnancy failure are complex, improper lumenogenesis or amniogenesis of the EPI represent possible contributing factors.

View Article and Find Full Text PDF

Formation of the primitive streak (PS) marks one of the most important developmental milestones in embryonic development. However, our understanding of cellular mechanism(s) underlying cell fate diversification along the anterior-posterior axis of the PS remains incomplete. Furthermore, differences in biophysical phenotypes between anterior and posterior PS cells, which could affect their functions and regulate their fate decisions, remain uncharacterized.

View Article and Find Full Text PDF