Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
PdNi alloy thin films demonstrate exceptional hydrogen sensing performance and exhibit significant potential for application in surface acoustic wave (SAW) hydrogen sensors. However, the long-term stability of SAW H sensors utilizing PdNi films as catalysts experiences a substantial decrease during operation. In this paper, X-ray photoelectron spectroscopy (XPS) is employed to investigate the failure mechanisms of PdNi thin films under operational conditions. The XPS analysis reveals that the formation of PdO species on PdNi thin films plays a crucial role in the failure of hydrogen sensing. Additionally, density functional theory (DFT) calculations indicate that hydrogen atoms encounter a diffusion energy barrier during the penetration process from the PdNiO surface to the subsurface region. The identification of PdNi film failure mechanisms through XPS and DFT offers valuable insights into the development of gas sensors with enhanced long-term stability. Guided by these mechanisms, we propose a method to restore the hydrogen sensing response time and magnitude to a certain extent by reducing the partially oxidized surface of the PdNi alloy under a hydrogen atmosphere at 70 °C, thereby restoring Pd to its metallic state with zero valence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c00007 | DOI Listing |