Glycosylation plays a pivotal role in regulating the functions and immunogenicity of antigens. Targeting the receptor-binding domain (RBD) of the spike protein (S protein) of SARS-CoV-2, we examined the impact of different glycoforms on RBD antigen immunogenicity and the underlying mechanisms. IgG-specific antibody titers and pseudovirus neutralization were compared in mice immunized with RBD antigens bearing different glycoforms, which were prepared using glycoengineering-capable and mammalian cell expression systems with distinct glycosylation pathways.
View Article and Find Full Text PDFVaccines (Basel)
May 2025
(1) Background: The COVID-19 pandemic highlights the critical necessity for the development of mucosal vaccines. (2) Objective: In this study, we aimed to develop mucosal vaccines based on the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. (3) Methods: We engineered the RBD of the Spike protein by incorporating ten lysine residues (K10), thereby enhancing its positive charge under physiological conditions.
View Article and Find Full Text PDFContinued mutation of the SARS-CoV-2 genome has led to multiple waves of COVID-19 infections, and new variants have continued to emerge and dominate. The emergence of Omicron and its subvariants has substantially increased the infectivity of SARS-CoV-2. RBD genes of the wild-type SARS-CoV-2 strain and the Delta, Omicron BA.
View Article and Find Full Text PDFFront Microbiol
January 2023
The emergence of severe acute respiratory syndrome coronavirus type II (SARS-CoV-2) variants have led to a decline in the protection of existing vaccines and antibodies, and there is an urgent need for a broad-spectrum vaccination strategy to reduce the pressure on the prevention and control of the pandemic. In this study, the receptor binding domain (RBD) of the SARS-CoV-2 Beta variant was successfully expressed through a glycoengineered yeast platform. To pursue a more broad-spectrum vaccination strategy, RBD-Beta and RBD-wild type were mixed at the ratio of 1:1 with Al(OH) and CpG double adjuvants for the immunization of BALB/c mice.
View Article and Find Full Text PDFWith the emergence of more variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the immune evasion of these variants from existing vaccines, the development of broad-spectrum vaccines is urgently needed. In this study, we designed a novel SARS-CoV-2 receptor-binding domain (RBD) subunit (RBD5m) by integrating five important mutations from SARS-CoV-2 variants of concern (VOCs). The neutralization activities of antibodies induced by the RBD5m candidate vaccine are more balanced and effective for neutralizing different SARS-CoV-2 VOCs in comparison with those induced by the SARS-CoV-2 prototype strain RBD.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kappa (B.1.617.
View Article and Find Full Text PDFIn 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, caused a global pandemic. Vaccines are expected to reduce the pressure of prevention and control, and have become the most effective strategy to solve the pandemic crisis. SARS-CoV-2 infects the host by binding to the cellular receptor angiotensin converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the surface spike (S) glycoprotein.
View Article and Find Full Text PDF