Publications by authors named "Vaithilingaraja Arumugaswami"

Tens of thousands of severe COVID-19 cases are hospitalized weekly in the U.S., often driven by an imbalance between antiviral responses and inflammatory signaling, leading to uncontrolled cytokine secretion.

View Article and Find Full Text PDF

Hantaviruses are zoonotically transmitted from rodents to humans through the respiratory route, with no currently approved antivirals or widely available vaccines. The recent discovery of interhuman-transmitted Andes virus (ANDV) necessitates the systematic identification of cell tropism, infective potential, and potent therapeutic agents. We utilized human primary lung endothelial cells, various pluripotent stem cell-derived heart and brain cell types, and established human lung organoid models to evaluate the tropisms of Old World Hantaan (HTNV) and New World ANDV and Sin Nombre (SNV) viruses.

View Article and Find Full Text PDF

Mpox virus (MPXV), a re-emerging zoonotic threat, has caused outbreaks in non-endemic regions through respiratory, sexual, and close-contact transmission. The increased transmissibility of Clade IIb fueled the 2022 global outbreak, with 2024 Clade Ib spread in the Democratic Republic of Congo further escalating concern. Both outbreaks were declared public health emergencies by the WHO.

View Article and Find Full Text PDF

Mpox virus (MPXV), a re-emerging zoonotic threat, has caused outbreaks in non-endemic regions through respiratory, sexual, and close-contact transmission. The increased transmissibility of Clade IIb fueled the 2022 global outbreak, with 2024 Clade Ib spread in the Democratic Republic of Congo further escalating concern. Both outbreaks were declared public health emergencies by the WHO.

View Article and Find Full Text PDF

The pandemic threat from newly emerging viral diseases constitutes a major unsolved issue for global health. Antiviral therapy can play an important role in treating and preventing the spread of unprecedented viral infections. A repository of compounds exhibiting broad-spectrum antiviral activity against a series of different viral families would be an invaluable asset to be prepared for future pandemic threats.

View Article and Find Full Text PDF

SARS-CoV-2 can infect cells through endocytic uptake, a process that is targeted by inhibition of lysosomal proteases. However, clinically this approach to treat viral infections has afforded mixed results, with some studies detailing an oral regimen of hydroxychloroquine accompanied by significant off-target toxicities. We rationalized that an organelle-targeted approach will avoid toxicity while increasing the concentration of the drug at the target.

View Article and Find Full Text PDF

Background: Many respiratory viruses attack the airway epithelium and cause a wide spectrum of diseases for which we have limited therapies. To date, a few primary human stem cell-based models of the proximal airway have been reported for drug discovery but scaling them up to a higher throughput platform remains a significant challenge. As a result, most of the drug screening assays for respiratory viruses are performed on commercial cell line-based 2D cultures that provide limited translational ability.

View Article and Find Full Text PDF

Combining a T cell-targeting mRNA vaccine encoding the conserved SARS-CoV-2 RNA-dependent RNA polymerase, RdRp, with a Spike-encoding mRNA vaccine may offer an additional pathway toward COVID-19 protection. Here, we show that a nucleoside-modified RdRp mRNA vaccine raises robust and durable CD8+ T cell responses in mice. Immunization drives a CD8+ T cell response enriched toward a specific RdRp epitope.

View Article and Find Full Text PDF

Cancer immunotherapy is gaining increasing attention. However, immune checkpoints are exploited by cancer cells to evade anti-tumor immunotherapy. Here, we knocked out NKG2A, an immune checkpoint expressed on natural killer (NK) cells, in human pluripotent stem cells (hPSCs) and differentiated these hPSCs into NK (PSC-NK) cells.

View Article and Find Full Text PDF

The Mpox virus (MPXV) is the causative agent of human Mpox disease - a debilitating rash illness similar to smallpox. Although Clade I MPXV has remained endemic to West and Central Africa, Clade II MPXV has been responsible for many outbreaks worldwide. The most recent outbreak in 2022 resulted from the rapid spread of a new clade of MPXV, classified into Clade IIb - a distinct lineage from the previously circulating viral strains.

View Article and Find Full Text PDF

While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection during pregnancy causes severe neurological and ocular abnormalities in infants, yet no vaccine or antivirals are available. Our transcriptomic analysis of ZIKV-infected retinal pigment epithelial (RPE) cells revealed alterations in the cholesterol pathway. Thus, we investigated the functional roles of ATP binding cassette transporter G1 (ABCG1) and sterol response element binding protein 2 (SREPB-2), two key players in cholesterol metabolism, during ocular ZIKV infection.

View Article and Find Full Text PDF

The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8 TMSCs .

View Article and Find Full Text PDF

The ketogenic diet (KD) has demonstrated benefits in numerous clinical studies and animal models of disease in modulating the immune response and promoting a systemic anti-inflammatory state. Here we investigate the effects of a KD on systemic toxicity in mice following SARS-CoV-2 infection. Our data indicate that under KD, SARS-CoV-2 reduces weight loss with overall improved animal survival.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent for coronavirus disease 2019 (COVID-19). Although vaccines have helped to prevent uncontrolled viral spreading, our understanding of the fundamental biology of SARS-CoV-2 infection remains insufficient, which hinders effective therapeutic development. Here, we found that Apolipoprotein E (ApoE), a lipid binding protein, is hijacked by SARS-CoV-2 for infection.

View Article and Find Full Text PDF
Article Synopsis
  • The Nucleocapsid protein (NCAP) of SARS-CoV-2 plays a vital role in the virus's function, with its self-assembly being central to this role.
  • Analysis shows that NCAP has low-complexity domains (LCDs) similar to those in other proteins, which can form phase separation droplets and amyloid fibrils.
  • The study reveals that the central LCD of NCAP can lead to both phase separation and amyloid formation, highlighting three adhesive segments that, when targeted by a new peptide (G12), can inhibit NCAP's self-assembly and exhibit antiviral effects against SARS-CoV-2.
View Article and Find Full Text PDF

RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees.

View Article and Find Full Text PDF

Earthworms are annelids. They play a major role in agriculture and soil fertility. Vermicompost is the best organic manure for plant crops.

View Article and Find Full Text PDF

RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak.

View Article and Find Full Text PDF

Zika virus (ZIKV) causes microcephaly and congenital eye disease. The cellular and molecular basis of congenital ZIKV infection are not well understood. Here, we utilized a biologically relevant cell-based system of human fetal retinal pigment epithelial cells (FRPEs), hiPSC-derived retinal stem cells (iRSCs), and retinal organoids to investigate ZIKV-mediated ocular cell injury processes.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited.

View Article and Find Full Text PDF

Zika virus (ZIKV), a mosquito-borne human pathogen, causes dire congenital brain developmental abnormalities in children of infected mothers. The global health crisis precipitated by this virus has led to a concerted effort to develop effective therapies and prophylactic measures although, unfortunately, not very successfully. The error-prone nature of RNA viral genome replication tends to promote evolution of novel viral strains, which could cause epidemics and pandemics.

View Article and Find Full Text PDF